Volume 88, Issue 5, Pages (May 2005)

Slides:



Advertisements
Similar presentations
Neutrophil-Bead Collision Assay: Pharmacologically Induced Changes in Membrane Mechanics Regulate the PSGL-1/P-Selectin Adhesion Lifetime  K.E. Edmondson,
Advertisements

Actin Protofilament Orientation at the Erythrocyte Membrane
Coarse-Grained Model of SNARE-Mediated Docking
Motor Regulation Results in Distal Forces that Bend Partially Disintegrated Chlamydomonas Axonemes into Circular Arcs  V. Mukundan, P. Sartori, V.F. Geyer,
Young Min Rhee, Vijay S. Pande  Biophysical Journal 
Goran Žagar, Patrick R. Onck, Erik van der Giessen  Biophysical Journal 
Madoka Suzuki, Hideaki Fujita, Shin’ichi Ishiwata  Biophysical Journal 
Peter J. Mulligan, Yi-Ju Chen, Rob Phillips, Andrew J. Spakowitz 
Effects of Geometric Parameters on Swimming of Micro Organisms with Single Helical Flagellum in Circular Channels  Alperen Acemoglu, Serhat Yesilyurt 
Ion Permeation through a Narrow Channel: Using Gramicidin to Ascertain All-Atom Molecular Dynamics Potential of Mean Force Methodology and Biomolecular.
Diffusion in a Fluid Membrane with a Flexible Cortical Cytoskeleton
Guillaume T. Charras, Mike A. Horton  Biophysical Journal 
Stretching Single-Stranded DNA: Interplay of Electrostatic, Base-Pairing, and Base-Pair Stacking Interactions  Yang Zhang, Haijun Zhou, Zhong-Can Ou-Yang 
Guillermo R. Lázaro, Suchetana Mukhopadhyay, Michael F. Hagan 
Volume 88, Issue 5, Pages (May 2005)
Volume 17, Issue 24, Pages (December 2007)
Lawrence C.-L. Lin, Frank L.H. Brown  Biophysical Journal 
Behavior of Giant Vesicles with Anchored DNA Molecules
Volume 106, Issue 11, Pages (June 2014)
Looping Probabilities in Model Interphase Chromosomes
Volume 107, Issue 11, Pages (December 2014)
Morphology of the Lamellipodium and Organization of Actin Filaments at the Leading Edge of Crawling Cells  Erdinç Atilgan, Denis Wirtz, Sean X. Sun  Biophysical.
Model Studies of the Dynamics of Bacterial Flagellar Motors
Volume 81, Issue 1, Pages (July 2001)
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Volume 111, Issue 2, Pages (July 2016)
Nucleosome Repositioning via Loop Formation
Volume 88, Issue 1, Pages (January 2005)
Volume 99, Issue 5, Pages (September 2010)
Vertex Models of Epithelial Morphogenesis
Propagation of Mechanical Stress through the Actin Cytoskeleton toward Focal Adhesions: Model and Experiment  Raja Paul, Patrick Heil, Joachim P. Spatz,
Guillermo R. Lázaro, Suchetana Mukhopadhyay, Michael F. Hagan 
OpenRBC: A Fast Simulator of Red Blood Cells at Protein Resolution
Mesoscale Simulation of Blood Flow in Small Vessels
Modulating Vesicle Adhesion by Electric Fields
Taeyoon Kim, Margaret L. Gardel, Ed Munro  Biophysical Journal 
A Molecular-Mechanical Model of the Microtubule
Volume 102, Issue 2, Pages (January 2012)
Shamik Sen, Shyamsundar Subramanian, Dennis E. Discher 
Volume 103, Issue 2, Pages (July 2012)
Volume 100, Issue 7, Pages (April 2011)
S. Majid Hosseini, James J. Feng  Biophysical Journal 
Alexander J. Sodt, Richard W. Pastor  Biophysical Journal 
Volume 90, Issue 8, Pages (April 2006)
Teresa Ruiz-Herrero, Michael F. Hagan  Biophysical Journal 
Mesoscopic Modeling of Bacterial Flagellar Microhydrodynamics
Volume 106, Issue 11, Pages (June 2014)
Volume 107, Issue 11, Pages (December 2014)
A Computational Model for the Electrostatic Sequestration of PI(4,5)P2 by Membrane- Adsorbed Basic Peptides  Jiyao Wang, Alok Gambhir, Stuart McLaughlin,
Lipid Bilayer Pressure Profiles and Mechanosensitive Channel Gating
Kristen E. Norman, Hugh Nymeyer  Biophysical Journal 
Hung-Yu Chang, Xuejin Li, George Em Karniadakis  Biophysical Journal 
Michael Schlierf, Felix Berkemeier, Matthias Rief  Biophysical Journal 
Lipeng Lai, Xiaofeng Xu, Chwee Teck Lim, Jianshu Cao 
Steven S. Andrews, Adam P. Arkin  Biophysical Journal 
Tyrone J. Yacoub, Allam S. Reddy, Igal Szleifer  Biophysical Journal 
Robust Driving Forces for Transmembrane Helix Packing
Siyuan Wang, Ned S. Wingreen  Biophysical Journal 
Volume 98, Issue 2, Pages (January 2010)
R. Gueta, D. Barlam, R.Z. Shneck, I. Rousso  Biophysical Journal 
Brownian Dynamics of Subunit Addition-Loss Kinetics and Thermodynamics in Linear Polymer Self-Assembly  Brian T. Castle, David J. Odde  Biophysical Journal 
Anisotropic Membrane Curvature Sensing by Amphipathic Peptides
Volume 95, Issue 5, Pages (September 2008)
How Cells Tiptoe on Adhesive Surfaces before Sticking
Raghvendra Pratap Singh, Ralf Blossey, Fabrizio Cleri 
Red Blood Cell Membrane Dynamics during Malaria Parasite Egress
Montse Rovira-Bru, David H. Thompson, Igal Szleifer 
Madoka Suzuki, Hideaki Fujita, Shin’ichi Ishiwata  Biophysical Journal 
Quantitative Modeling and Optimization of Magnetic Tweezers
Dmitry A. Fedosov, Bruce Caswell, George Em Karniadakis 
Presentation transcript:

Volume 88, Issue 5, Pages 3707-3719 (May 2005) Spectrin-Level Modeling of the Cytoskeleton and Optical Tweezers Stretching of the Erythrocyte  J. Li, M. Dao, C.T. Lim, S. Suresh  Biophysical Journal  Volume 88, Issue 5, Pages 3707-3719 (May 2005) DOI: 10.1529/biophysj.104.047332 Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 1 Illustration of the model using the potential from Eq. 1 for triangle-dominated cytoskeleton. Here i∈1..S labels a spectrin link connecting two adjacent junction complexes, which exerts an entirely attractive force fWLC(Li). The expression α∈1..Π labels triangular plaquette of lipid material with area Aα. It leads to a repulsive energy Cq/Aαq that counterbalances the spectrin attraction. Two adjacent lipid plaquettes with normal vectors nα and nβ also give rise to a bending energy Fbending that depends on the angle between nα and nβ, in reference to a spontaneous curvature angle θ0. Biophysical Journal 2005 88, 3707-3719DOI: (10.1529/biophysj.104.047332) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 2 Random networks generated by equilibrating various fictitious two-dimensional liquids on a spherical surface (diameter 6.53μm). The color of each ball labels the degree of the actin vertex (2, cyan; 3, magenta; 4, black; 5, yellow; 6, red; 7, blue; 8, green; and 9, white). (a) Degree-6 dominant network (28,673 vertices) generated by spreading Lennard-Jones liquid on the spherical surface. This network has 61.1% degree-6, 31.7% degree-5, 6.2% degree-4, and <1% in degree-2,3,7 vertices. The surface is still mainly tessellated by triangles, which allows us to use the Discher potential later on. (b) Degree-4 dominant network (24,372 vertices) with 52.8% degree-4, 30.2% degree-3, 14.2% degree-5, and 2.0% degree-2 vertices. This network has a large number of squares and pentagons, which cannot be modeled by a potential similar to Eq. 1. (c) Degree-3 dominant random network (18,637 vertices) with 46.0% degree-3, 30.4% degree-2, 15.6% degree-4, 6.4% degree-1, and 1.1% degree-5 vertices. Observe the occurrence of topological polygons with 10 sides and up, some of which have large aspect ratios. Panels b and c are created using the Stillinger-Weber potential. Biophysical Journal 2005 88, 3707-3719DOI: (10.1529/biophysj.104.047332) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 3 Similar as Fig. 2 except the various liquids live on a biconcave surface described by analytical formula (Eq. 14) with parameters (R,c0,c1,c2)=(3.91μm, 0.1035805, 1.001279, and −0.561381). The same color encoding scheme as Fig. 2 is used. (a) Degree-6 dominant network (28,673 vertices). (b) Degree-4 dominant random network (24,372 vertices). (c) Degree-3 dominant random network (18,637 vertices). Biophysical Journal 2005 88, 3707-3719DOI: (10.1529/biophysj.104.047332) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 4 (a) Cross-sectional view of Fig. 3 a configuration, obtained by constraining the CGMD vertices to an analytical surface formula, Eq. 14. (b) Relaxed cytoskeleton after removing the Eq. 14 analytical constraint and turning on the Eq. 1 potential. The vertices can no longer change their connectivities in b, in contrast to in a. The shape of b is not entirely symmetric due to thermal fluctuations. The parameters used are: L0=75nm, Lmax=3.17 L0=237.75nm, p=0.1 L0=7.5nm, q=1, ksurface=600, kvolume=600, and kbend=200 kBT, θ0=1°. (c) Relaxed cytoskeleton if we use Eq. 15 bending energy expression instead of Eq. 4. Panels b and c have nearly the same shape, and deviate only slightly from the analytic shape (a). Biophysical Journal 2005 88, 3707-3719DOI: (10.1529/biophysj.104.047332) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 5 Cup-shape cytoskeleton as the global energy minimum obtained using Eq. 1, and with the spherical cytoskeleton Fig. 2 a as the initial (and therefore the reference) state, after deflation procedure at 65% cytosol volume. The parameters used are: L0=75nm, Lmax=3.17 L0=237.75nm, p=0.075 L0=5.625nm, q=1, ksurface=600, kvolume=600, and kbend=69 kBT, θ0=0, which gives the shear modulus μ=11μN/m; area dilatational modulus K=22μN/m; uniaxial tension Young's modulus E=29μN/m; Poisson's ratio ν=1/3; and average bending modulus κ=8.3×10−20J. The cup-shape is found to be the ground-state unless we increase κ beyond 2×10−18J keeping other parameters fixed, or if we use another reference state, such as Fig. 4 b, which already has the in-plane shear stress relaxed to zero. Biophysical Journal 2005 88, 3707-3719DOI: (10.1529/biophysj.104.047332) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 6 RBC shape evolution at different optical tweezers stretch forces using Eq. 1 and Fig. 4 b cytoskeleton initial state. The parameters used are: L0=75nm, Lmax=3.17 L0=237.75nm, p=0.1 L0=7.5nm, q=1, ksurface=600, kvolume=600, and kbend=200 kBT, θ0=1°. This parameter set gives shear modulus μ=8.3μN/m; area dilatational modulus K=16.6μN/m; uniaxial tension Young's modulus E=22.1μN/m; Poisson's ratio ν=1/3; and average bending modulus κ=2.4×10−19J. Biophysical Journal 2005 88, 3707-3719DOI: (10.1529/biophysj.104.047332) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 7 RBC cross sections calculated at optical tweezers stretch load of 100pN, with the parameters of Fig. 6, using (a) bending energy expression Eq. 4, or (b) bending energy expression Eq. 15. Biophysical Journal 2005 88, 3707-3719DOI: (10.1529/biophysj.104.047332) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 8 Optical tweezers stretching response up to a maximal tensile load of 200pN. The figure shows experimental data of stretching force versus axial and transverse diameters of the RBC, from Mills et al. (2004). Also shown are the three-dimensional finite-element simulations of the large deformation of RBC using a hyperelasticity constitutive model for the cell membrane (Dao et al., 2003; Mills et al., 2004). See text for further discussion of this model and for choice of material parameters. Results from the present spectrin-level simulations using CGMD techniques are shown as solid lines. Biophysical Journal 2005 88, 3707-3719DOI: (10.1529/biophysj.104.047332) Copyright © 2005 The Biophysical Society Terms and Conditions