Exercise Use long division to find the quotient. 180 ÷ 15
Exercise Use long division to find the quotient. 3 ÷ 5
Exercise Use long division to find the quotient. 3 ÷ 12
Exercise Use long division to find the quotient. 1 ÷ 3
Exercise Use long division to find the quotient. 7 ÷ 11
, ( ) Rational Numbers can be expressed as a ratio: 3 4 2 1 2 , ( ) 3 4 2 1 2 can be expressed as a decimal: 0.75, 2
When a rational number is expressed as a decimal, the digits either terminate or repeat.
1 3 2 5
Example 1 3 4 Convert to a decimal. 4 3.00 0.75 2 8 20 3 4 = 0.75
Example 2 5 12 Convert to a decimal. 5 12 = 0.416666… = 0.416 0.416 5 12 Convert to a decimal. 12 5.000 0.416 4 8 20 12 80 72 8 5 12 = 0.416666… = 0.416
Example 3 2 11 Convert to a decimal. 11 2.00 0.18 1 1 90 88 2 2 11 2 11 Convert to a decimal. 11 2.00 0.18 1 1 90 88 2 2 11 = 0.181818… = 0.18
Example Convert the fraction to a decimal. 7 20 = 0.35
Example Convert the fraction to a decimal. 7 3 = 2.3
Example Convert the fraction to a decimal. 4 33 = 0.12
Example Convert the fraction to a decimal. 11 24 = 0.4583
Example Convert the fraction to a decimal. 5 7 = 0.714285
To convert terminating decimals to fractions: place the digit(s) that follow(s) the decimal point over the place value of the last digit and reduce to lowest terms.
Example 4 Convert 0.175 to its reduced rational form using the GCF. 175 1,000 = 7 x 25 40 x 25 7 40 =
Example Convert 0.12 to a fraction in lowest terms. 12 100 3 25 =
Example Convert 3.25 to a fraction in lowest terms. 325 100 13 4 =
To convert repeating decimals to fractions: Set the decimal equal to x. Multiply the equation by 10n, where n = the number of repeating digits. Subtract 1. from 2. Reduce.
Example 5 0.45
Example 6 0.136
0.3
0.7
0.342
0.571, 0.579, 0.57, 0.6, 0.571, 0.5714, 0.59