Volume 154, Issue 1, Pages (July 2013)

Slides:



Advertisements
Similar presentations
Volume 20, Issue 18, Pages (September 2010)
Advertisements

Volume 22, Issue 9, Pages (February 2018)
Abdominal-B Neurons Control Drosophila Virgin Female Receptivity
Cholinergic Control of Synchronized Seminal Emissions in Drosophila
Volume 61, Issue 4, Pages (February 2009)
Estrogen Masculinizes Neural Pathways and Sex-Specific Behaviors
Pinky Kain, Anupama Dahanukar  Neuron 
Independent, Reciprocal Neuromodulatory Control of Sweet and Bitter Taste Sensitivity during Starvation in Drosophila  Hidehiko K. Inagaki, Ketaki M.
Avoiding DEET through Insect Gustatory Receptors
Troy R. Shirangi, Allan M. Wong, James W. Truman, David L. Stern 
Identification of E2/E3 Ubiquitinating Enzymes and Caspase Activity Regulating Drosophila Sensory Neuron Dendrite Pruning  Chay T. Kuo, Sijun Zhu, Susan.
Dopaminergic Modulation of Sucrose Acceptance Behavior in Drosophila
Activation of Latent Courtship Circuitry in the Brain of Drosophila Females Induces Male-like Behaviors  Carolina Rezával, Siddharth Pattnaik, Hania J.
translin Is Required for Metabolic Regulation of Sleep
Daniel T. Babcock, Christian Landry, Michael J. Galko  Current Biology 
Genetic Identification and Separation of Innate and Experience-Dependent Courtship Behaviors in Drosophila  Yufeng Pan, Bruce S. Baker  Cell  Volume 156,
Interspecies Sex and Taste
The Drosophila Female Aphrodisiac Pheromone Activates ppk23+ Sensory Neurons to Elicit Male Courtship Behavior  Hirofumi Toda, Xiaoliang Zhao, Barry J.
Mutual Repression by Bantam miRNA and Capicua Links the EGFR/MAPK and Hippo Pathways in Growth Control  Héctor Herranz, Xin Hong, Stephen M. Cohen  Current.
Starvation-Induced Depotentiation of Bitter Taste in Drosophila
The Role of PPK26 in Drosophila Larval Mechanical Nociception
Volume 18, Issue 3, Pages (January 2017)
Opposing Dopaminergic and GABAergic Neurons Control the Duration and Persistence of Copulation in Drosophila  Michael A. Crickmore, Leslie B. Vosshall 
Volume 48, Issue 6, Pages (December 2005)
Volume 49, Issue 2, Pages (January 2006)
fruitless Splicing Specifies Male Courtship Behavior in Drosophila
Li E. Cheng, Wei Song, Loren L. Looger, Lily Yeh Jan, Yuh Nung Jan 
Masayuki Koganezawa, Ken-ichi Kimura, Daisuke Yamamoto  Current Biology 
Volume 149, Issue 5, Pages (May 2012)
Neuronal Control of Drosophila Courtship Song
Volume 23, Issue 13, Pages (July 2013)
Volume 22, Issue 13, Pages (July 2012)
HBL-1 Patterns Synaptic Remodeling in C. elegans
James J.L. Hodge, Praseeda Mullasseril, Leslie C. Griffith  Neuron 
Ascending SAG Neurons Control Sexual Receptivity of Drosophila Females
A PDF/NPF Neuropeptide Signaling Circuitry of Male Drosophila melanogaster Controls Rival-Induced Prolonged Mating  Woo Jae Kim, Lily Yeh Jan, Yuh Nung.
Volume 139, Issue 2, Pages (October 2009)
Masayuki Koganezawa, Daisuke Haba, Takashi Matsuo, Daisuke Yamamoto 
Volume 24, Issue 6, Pages (August 2018)
Troy R. Shirangi, Allan M. Wong, James W. Truman, David L. Stern 
Neural Circuitry that Governs Drosophila Male Courtship Behavior
A PDF/NPF Neuropeptide Signaling Circuitry of Male Drosophila melanogaster Controls Rival-Induced Prolonged Mating  Woo Jae Kim, Lily Yeh Jan, Yuh Nung.
Alexander G. Vaughan, Chuan Zhou, Devanand S. Manoli, Bruce S. Baker 
Propagation of Dachsous-Fat Planar Cell Polarity
Taste Representations in the Drosophila Brain
Motion Processing Streams in Drosophila Are Behaviorally Specialized
Female Contact Activates Male-Specific Interneurons that Trigger Stereotypic Courtship Behavior in Drosophila  Soh Kohatsu, Masayuki Koganezawa, Daisuke.
insomniac and Cullin-3 Regulate Sleep and Wakefulness in Drosophila
Volume 7, Issue 6, Pages (June 2008)
Evolution of yellow Gene Regulation and Pigmentation in Drosophila
Volume 71, Issue 6, Pages (September 2011)
Volume 25, Issue 5, Pages (March 2015)
Bonnie Chu, Vincent Chui, Kevin Mann, Michael D. Gordon 
Extinction Antagonizes Olfactory Memory at the Subcellular Level
An Olfactory Sensory Map in the Fly Brain
The Color-Vision Circuit in the Medulla of Drosophila
Zhenyu Zhang, Leslie M. Stevens, David Stein  Current Biology 
Single Serotonergic Neurons that Modulate Aggression in Drosophila
Bettina Schnell, Ivo G. Ros, Michael H. Dickinson  Current Biology 
Volume 22, Issue 19, Pages (October 2012)
Martin Häsemeyer, Nilay Yapici, Ulrike Heberlein, Barry J. Dickson 
F. Christian Bennett, Kieran F. Harvey  Current Biology 
Volume 24, Issue 7, Pages (March 2014)
Masayuki Koganezawa, Daisuke Haba, Takashi Matsuo, Daisuke Yamamoto 
The Transcription Factor Mef2 Links the Drosophila Core Clock to Fas2, Neuronal Morphology, and Circadian Behavior  Anna Sivachenko, Yue Li, Katharine C.
Volume 28, Issue 6, Pages e3 (March 2018)
Volume 83, Issue 1, Pages (July 2014)
Neural Circuitry that Evokes Escape Behavior upon Activation of Nociceptive Sensory Neurons in Drosophila Larvae  Jiro Yoshino, Rei K. Morikawa, Eri Hasegawa,
Masayuki Koganezawa, Ken-ichi Kimura, Daisuke Yamamoto  Current Biology 
Different Levels of the Homeodomain Protein Cut Regulate Distinct Dendrite Branching Patterns of Drosophila Multidendritic Neurons  Wesley B Grueber,
Presentation transcript:

Volume 154, Issue 1, Pages 89-102 (July 2013) Genetic and Neural Mechanisms that Inhibit Drosophila from Mating with Other Species  Pu Fan, Devanand S. Manoli, Osama M. Ahmed, Yi Chen, Neha Agarwal, Sara Kwong, Allen G. Cai, Jeffrey Neitz, Adam Renslo, Bruce S. Baker, Nirao M. Shah  Cell  Volume 154, Issue 1, Pages 89-102 (July 2013) DOI: 10.1016/j.cell.2013.06.008 Copyright © 2013 Elsevier Inc. Terms and Conditions

Cell 2013 154, 89-102DOI: (10.1016/j.cell.2013.06.008) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 1 The Foreleg Tarsi Inhibit Courtship of Other Species (A) Overview of D. melanogaster male courtship behaviors and their likely sensory control. (B and G) WT D. melanogaster males were provided with either conspecific or D. virilis females. (C and H) Males lacking labellum, maxillary palps, antennae, or visible light court conspecific, but not D. virilis, females. Males lacking foreleg tarsi court conspecific and D. virilis females. (D and I) Males lacking foreleg tarsi show high levels of courtship toward conspecific and D. virilis females in the majority of assays. (E and J) Males lacking foreleg tarsi attempt to copulate with conspecific and D. virilis females. (F and K) Males lacking foreleg tarsi attempt copulation with conspecific and D. virilis females in most assays. Error bars represent SEM; n ≥ 11/experimental cohort; ‡p < 0.001. Cell 2013 154, 89-102DOI: (10.1016/j.cell.2013.06.008) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 2 Identification of Gr Neurons in the Male Foreleg that Inhibit Interspecies Courting (A–H′) Expression of different Grs (A–H) and ablation of Gr neurons (A′–H′) in foreleg tarsi. Whole-mount preparation of tarsal segments 4 and 5 (t4, t5) (A, A′, and C–H′) and t2 (B and B′) shown. More distal tarsal segments are on the left. (I) Ablation of Gr32a or Gr33a neurons in D. melanogaster males permits courting of D. virilis females. All statistical comparisons in this and subsequent figures were performed between experimental and the corresponding control genotypes. Error bars represent SEM; n = 5–10/genotype (A–H′) and n = 8–12/genotype (I); ‡p < 0.001; scale bar, 50 μm. Please see Figure S1 and Table S1. Cell 2013 154, 89-102DOI: (10.1016/j.cell.2013.06.008) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 3 Ablation of Gr32a or Gr33a Neurons Permits Courting of Females of Other Species (A–P) D. melanogaster males with ablation of Gr32a or Gr33a neurons (Gr:hid) were tested for courtship with females. Last common ancestor (evolutionary divergence) shared with D. melanogaster shown as mya (not to scale) above the bar graphs. (A–D) Ablation of Gr32a or Gr33a neurons does not alter courtship of conspecific females. (E–P) Ablation of Gr32a or Gr33a neurons permits courtship of D. simulans (E–H), D. yakuba (I–L), and D. virilis (M–P) females. Error bars represent SEM; n = 10–24/genotype; ∗p < 0.05, ¶p < 0.01, ‡p < 0.001. Cell 2013 154, 89-102DOI: (10.1016/j.cell.2013.06.008) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 4 Gr32a Inhibits Interspecies Courtship (A–P) Gr32a and Gr33a mutant and control D. melanogaster males were tested for courtship with females. (A–D) No difference in courting conspecific females between control and Gr32a or Gr33a mutants. (E–P) Gr32a, but not Gr33a, mutants court D. simulans (E–H), D. yakuba (I–L), and D. virilis (M–P) females. Error bars represent SEM; n = 10–24/genotype; ∗p < 0.05, ‡p < 0.001; NS = not significant. Please see Figure S2 and Movies S1, S2, and S3. Cell 2013 154, 89-102DOI: (10.1016/j.cell.2013.06.008) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 5 Gr32a Neurons Inhibit Interspecies Courtship by Recognizing Cuticular Hydrocarbons Found on Other Species (A–D) D. melanogaster males WT (A and C) or mutant for Gr32a (B and D) were tested for courtship with conspecific or D. virilis females. (A) Inactivation of synaptic release by Gr32a neurons (Gr32a:shits) at the restrictive temperature (31°C) does not alter courtship of conspecific females. (B) Increase in electrical activity in Gr32a neurons (Gr32a:dTrpA1) at 31°C does not alter courtship of conspecific females. (C) Inactivation of synaptic release by Gr32a neurons permits courtship of D. virilis females by Gr32a:shits males. (D) Increase in electrical activity in Gr32a neurons abrogates courtship of D. virilis females by Gr32a–/–, Gr32a:dTrpA1 males. (E) Gr32a–/– males court oe– conspecific females coated with cuticular extracts from D. melanogaster (D.m.), simulans (D.s.), yakuba (D.y.), and virilis (D.v.), as well as with specific CHs present on these species. Error bars represent SEM; n = 10–16/genotype; ∗p < 0.05, ‡p < 0.001. Please see Figure S3. Cell 2013 154, 89-102DOI: (10.1016/j.cell.2013.06.008) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 6 A Cellular and Molecular Pathway that Inhibits Interspecies Courtship (A) fru1/fru4-40 males court conspecific females and females of other species. (B–D″) No coexpression of FruM and Gr32a in foreleg tarsi of D. melanogaster males (D). A cell that appears colabeled for FruM and Gr32a in a Z projected image (arrow in D) in fact represents two distinct cells in different optical slices expressing either FruM (B″–D″) or Gr32a (B′–D′), but not both (lines used: frulex, lexO-stingerGFP(line E,F) and Gr32a-GAL4, UAS-tdTomato; abbreviated to frulex:stingerGFP, Gr32a:tdTomato). (E) Schematic of the fly central nervous system shows the location of the SOG and first thoracic segment (T1) VNC (red boxes). (F–I) Native GRASP fluorescence (green) in the vertical limb of the SOG and the T1 VNC in D. melanogaster males (Gr32a:spGFP1-10::Nrx, frulex:spGFP11::CD4) is lost upon T1 tarsectomy. The neuropil (magenta) is immunolabeled with nc82. (J) Knockdown of FruM in male aDT6 neurons (P52A:fruMIR) permits courtship of conspecific females and females of other species. Error bars represent SEM; n = 10–31/experimental cohort; ¶p < 0.01, ‡p < 0.001; scale bar, 20 μm. See Figure S4, Table S2, and Movie S4. Cell 2013 154, 89-102DOI: (10.1016/j.cell.2013.06.008) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 7 Sexually Dimorphic but Evolutionarily Conserved Regulation of Interspecies Courtship (A and B) Tarsiless D. simulans and yakuba males court D. melanogaster females similar to conspecific males. (C–E) D. melanogaster females reject courtship by D. simulans males with wing flicks, kicks, and ovipositor extrusions. (F–H) D. melanogaster females reject courtship by D. yakuba males with wing flicks, kicks, and ovipositor extrusions. Error bars represent SEM; n = 11–18/experimental cohort; ∗p < 0.05; ‡p < 0.001. See Movies S5, S6, and S7. Cell 2013 154, 89-102DOI: (10.1016/j.cell.2013.06.008) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure S1 Identification and Ablation of Gr Neurons in the Male Foreleg, Related to Figure 2 (A–H′) Expression (A–H) of different Grs (Gr:stingerGFP) and ablation (A′–H′) of Gr neurons (Gr:stinger GFP, hid) in foreleg tarsi. Whole-mount preparation of all tarsi (t1–t5) shown, with more distal tarsi to the left. n= 5–10/genotype; scale bar, 50 μm. Cell 2013 154, 89-102DOI: (10.1016/j.cell.2013.06.008) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure S2 Gr32a, but Not Gr66a or Ppk23, Inhibits Interspecies Courtship, Related to Figure 4 Control and experimental males were tested for courtship with females of various species. (A–D) No difference in courting conspecific females between control, Gr66a null, and flies with knockdown of Gr32a (C155:Gr32aIR-1 or C155:Gr32aIR-2). As expected, Ppk23 null males show reduced courtship of conspecific females (Lu et al., 2012; Thistle et al., 2012; Toda et al., 2012). (E–P) Males with a knockdown of Gr32a, but not Gr66a or Ppk23 mutant males, court D. simulans (E-H), D. yakuba (I–L), and D. virilis (M–P) females. (Q) Gr32a–/– males court D. pseudoobscura. Error bars represent SEM; n = 10–24/genotype; ∗p < 0.05, ¶p < 0.01, ‡p < 0.001. Cell 2013 154, 89-102DOI: (10.1016/j.cell.2013.06.008) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure S3 Analytical Data for 11P, Related to Figure 5 (A) 13C NMR spectrum collected at 75 MHz. (B) 1H NMR spectrum collected at 300 MHz. (C) GCMS of purified 11P, as detected by TIC (total ion current, mass spectrometric). (D) m/z composition of the dominant peak in the chromatogram shown in (C). (E) Chemical structure of z-7-tricosene (7T). (F) Chemical structure of z-9-tricosene (9T). (G) Chemical structure of z-11-pentacosene (11P). (H) Chemical structure of lobeline. (I) Chemical structure of N, N, diethyl-meta-toluamide (DEET). Cell 2013 154, 89-102DOI: (10.1016/j.cell.2013.06.008) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure S4 Distinct Mechanisms Inhibit Conspecific Intermale and Interspecies Courtship, Related to Figure 6 (A) Consistent with the lack of FruM expression in Gr32a neurons, driving expression of a FruM RNAi in male Gr32a neurons does not lead to courtship of D. virilis females. (B–D) No overlap in FruM (frulex:stinger GFP) and P52A (P52A:tdTomato) cells in foreleg tarsi. P52A:tdTomato reveals previously unreported expression (Manoli and Baker, 2004) in the cuticle and other nonneural tissue in the foreleg, but these cells do not coexpress FruM in the tarsi. (E) Enumeration of FruM (frulex:stinger GFP) and P52A (P52A:tdTomato) cells in foreleg tarsi and tibia. (F) Gr32a null males court conspecific, D. simulans and yakuba, but not virilis, males. (G) Gr33a null males court conspecific males, but not males of other species. (H) Ppk23 null males court conspecific males, but not males of other species. (I) fru1/fru4-40 males court conspecific, D. simulans and yakuba, but not virilis, males. (J) Males with a knockdown of FruM in aDT6 neurons (P52A:fruMIR) court D. yakuba males. As reported previously, these flies do not court conspecific males (Manoli and Baker, 2004). Taken together with the courtship phenotypes of Gr32a, Gr33a, and Ppk23 null males, our results suggest that it is possible to dissociate at a molecular and cellular level the atypical courtship of conspecific males from that of animals of other species. (K–M″) No coexpression of FruM and Gr32a in foreleg tarsi of D. melanogaster males (K–M). Enlarged version of the panels shown in main Figures 6B–6D″. A cell that appears colabeled for FruM and Gr32a in a Z projected image (arrow in M) in fact represents two distinct cells in different optical slices expressing either FruM (K″–M″) or Gr32a (K′–M′) but not both. (N–Q) Schematic of connectivity between L3 and Tm9 neurons in the M3 layer of the medulla (N); gray box represents the area of the histological images shown to the right (O–Q). Native GRASP fluorescence is visualized in the M3 layer (O, Q) but not in other regions of the medulla (visualized with nc82 immunolabeling in P, Q) although these regions do contain processes from L3 or Tm9 neurons. (R–T) Switching the expression of the GRASP components also labels contacts between Gr32a (Gr32a:LexA) and FruM (fruM:GAL4) neurons in the SOG and T1 VNC of D. melanogaster males (Gr32a:spGFP11::CD4, fru:spGFP1-10::Nrx), as visualized by native GRASP fluorescence. (U–V″) No contacts between Gr32a and aDT6 neurons in the SOG, as visualized by native GRASP fluorescence, in D. melanogaster males (Gr32alex:spGFP11::CD4, P52A:spGFP1-10::Nrx). The neuropil (magenta) is immunolabeled with nc82. (W–W″) Immunolabeling confirms expression of the individual GRASP components in the SOG of D. melanogaster males (Gr32a:spGFP11::CD4, P52A:spGFP1-10::Nrx). (X) dBrainbow-labeled clones in D. melanogaster males (hs:Cre, Gr32a:GAL4::VP16, P52A:GAL4, UAS-dBrainbow) show no overlap between axonal arbors of Gr32a neurons (green and magenta clones) in the SOG and aDT6 (green clones) soma and local dendritic arbors (Miyamoto and Amrein, 2008). aDT6 axon projections can be visualized as two thick green vertical bands exiting the top of the figure. See also Movie S4 for 3D reconstruction of the optical stack. Error bars represent SEM; n = 10–31/experimental cohort for all panels except (W–W″, n = 5); ¶p < 0.01, ‡p < 0.001; NS = not significant; scale bar, 50 μm (B–D), 10 μm (O–Q), and 20 μm (V–X). Cell 2013 154, 89-102DOI: (10.1016/j.cell.2013.06.008) Copyright © 2013 Elsevier Inc. Terms and Conditions