Abhishek Mandal, Patrick C.A. van der Wel  Biophysical Journal 

Slides:



Advertisements
Similar presentations
Line Active Hybrid Lipids Determine Domain Size in Phase Separation of Saturated and Unsaturated Lipids  Robert Brewster, Samuel A. Safran  Biophysical.
Advertisements

Interaction of LL-37 with Model Membrane Systems of Different Complexity: Influence of the Lipid Matrix  E. Sevcsik, G. Pabst, W. Richter, S. Danner,
Ewa K. Krasnowska, Enrico Gratton, Tiziana Parasassi 
Ismail M. Hafez, Steven Ansell, Pieter R. Cullis  Biophysical Journal 
Thomas G. Anderson, Harden M. McConnell  Biophysical Journal 
Quantitative Coherent Anti-Stokes Raman Scattering Imaging of Lipid Distribution in Coexisting Domains  Li Li, Haifeng Wang, Ji-Xin Cheng  Biophysical.
Volume 96, Issue 10, Pages (May 2009)
Lars Kjaer, Lise Giehm, Thomas Heimburg, Daniel Otzen 
Volume 104, Issue 3, Pages (February 2013)
Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy 
Volume 76, Issue 2, Pages (February 1999)
Volume 97, Issue 5, Pages (September 2009)
Volume 107, Issue 10, Pages (November 2014)
Daniel M. Freed, Peter S. Horanyi, Michael C. Wiener, David S. Cafiso 
Volume 107, Issue 1, Pages (July 2014)
Composition Fluctuations in Lipid Bilayers
Juan M. Vanegas, Maria F. Contreras, Roland Faller, Marjorie L. Longo 
Volume 103, Issue 4, Pages (August 2012)
Shuichi Toraya, Katsuyuki Nishimura, Akira Naito  Biophysical Journal 
Volume 107, Issue 12, Pages (December 2014)
Volume 104, Issue 3, Pages (February 2013)
Volume 96, Issue 6, Pages (March 2009)
Tracking Phospholipid Populations in Polymorphism by Sideband Analyses of 31P Magic Angle Spinning NMR  Liam Moran, Nathan Janes  Biophysical Journal 
Fast Motions of Key Methyl Groups in Amyloid-β Fibrils
Experimental and Computational Studies Investigating Trehalose Protection of HepG2 Cells from Palmitate-Induced Toxicity  Sukit Leekumjorn, Yifei Wu,
Coarse-Grained Molecular Dynamics Simulations of Phase Transitions in Mixed Lipid Systems Containing LPA, DOPA, and DOPE Lipids  Eric R. May, Dmitry I.
Volume 114, Issue 2, Pages (January 2018)
H.M. Seeger, G. Marino, A. Alessandrini, P. Facci  Biophysical Journal 
Volume 107, Issue 6, Pages (September 2014)
Ivan V. Polozov, Klaus Gawrisch  Biophysical Journal 
Volume 114, Issue 12, Pages (June 2018)
Volume 114, Issue 5, Pages (March 2018)
Gel-Assisted Formation of Giant Unilamellar Vesicles
Structure of Supported Bilayers Composed of Lipopolysaccharides and Bacterial Phospholipids: Raft Formation and Implications for Bacterial Resistance 
Haden L. Scott, Justin M. Westerfield, Francisco N. Barrera 
Volume 107, Issue 10, Pages (November 2014)
Yuno Lee, Philip A. Pincus, Changbong Hyeon  Biophysical Journal 
Holly C. Gaede, Klaus Gawrisch  Biophysical Journal 
Volume 111, Issue 2, Pages (July 2016)
Volume 112, Issue 1, Pages (January 2017)
Volume 106, Issue 3, Pages (February 2014)
Orsolya Toke, W. Lee Maloy, Sung Joon Kim, Jack Blazyk, Jacob Schaefer 
Volume 105, Issue 9, Pages (November 2013)
Volume 85, Issue 6, Pages (December 2003)
Volume 103, Issue 8, Pages (October 2012)
Volume 108, Issue 1, Pages 5-9 (January 2015)
Electrostatic Control of Phospholipid Polymorphism
Volume 93, Issue 2, Pages (July 2007)
Molecular View of Hexagonal Phase Formation in Phospholipid Membranes
Volume 95, Issue 9, Pages (November 2008)
Erik Hellstrand, Emma Sparr, Sara Linse  Biophysical Journal 
Desmosterol May Replace Cholesterol in Lipid Membranes
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Acyl Chain Length and Saturation Modulate Interleaflet Coupling in Asymmetric Bilayers: Effects on Dynamics and Structural Order  Salvatore Chiantia,
The Structural Basis of Cholesterol Accessibility in Membranes
Volume 83, Issue 3, Pages (September 2002)
K.J. Tielrooij, D. Paparo, L. Piatkowski, H.J. Bakker, M. Bonn 
Volume 94, Issue 11, Pages (June 2008)
Philip J. Robinson, Teresa J.T. Pinheiro  Biophysical Journal 
Sergi Garcia-Manyes, Gerard Oncins, Fausto Sanz  Biophysical Journal 
Volume 102, Issue 6, Pages (March 2012)
Molecular Dynamics Simulations of Hydrophilic Pores in Lipid Bilayers
Juan M. Vanegas, Maria F. Contreras, Roland Faller, Marjorie L. Longo 
Main Phase Transitions in Supported Lipid Single-Bilayer
Transfer of Arginine into Lipid Bilayers Is Nonadditive
Molecular Structure of Membrane Tethers
Volume 114, Issue 1, Pages (January 2018)
Volume 105, Issue 9, Pages (November 2013)
Volume 76, Issue 1, Pages (January 1999)
Volume 85, Issue 6, Pages (December 2003)
Presentation transcript:

MAS 1H NMR Probes Freezing Point Depression of Water and Liquid-Gel Phase Transitions in Liposomes  Abhishek Mandal, Patrick C.A. van der Wel  Biophysical Journal  Volume 111, Issue 9, Pages 1965-1973 (November 2016) DOI: 10.1016/j.bpj.2016.09.027 Copyright © 2016 Biophysical Society Terms and Conditions

Figure 1 Phospholipid species and their gel-to-liquid crystalline phase transition temperatures (Tm): (A) DPPC, (B) DPPG, (C) DOPC, (D) DOPG, (E) DMPC, (F) SOPC, (G) POPC, (H) OPPC, and (I) TOCL. The corresponding Tm value is indicated alongside each lipid species, based on literature reports (13,14) and DSC (Fig. S1). Biophysical Journal 2016 111, 1965-1973DOI: (10.1016/j.bpj.2016.09.027) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 2 1H MAS ssNMR spectra of DOPC/TOCL MLVs at different sample temperatures. (A) At room temperature, narrow water (∼4.8 ppm) and lipid CH2 and CH3 peaks indicate liquid-like motion. (B) At −9°C, peaks remain narrow and intense. (C) At −13°C, the water signal is attenuated due to ice formation, but lipid acyl chain signals remain intense. (D) At −22°C, the water peak has largely disappeared, and lipid peaks are partly attenuated because of the lipid phase transition. (E) At −38°C, all 1H peaks are broadened beyond detection. The inset to the right shows enlarged versions of the lipid peaks. (F) Temperature-dependent peak heights for the acyl chain CH2 peaks are shown. Biophysical Journal 2016 111, 1965-1973DOI: (10.1016/j.bpj.2016.09.027) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 3 Intensity of 1H MAS ssNMR peaks of water (diamonds) and lipid CH2 groups (squares) as a function of sample temperature. These peak heights correlate to the dynamics of the solvent and lipid core, respectively. Data are shown for MLVs of (A) DPMC, (B) SOPC, (C) POPC, and (D) OPPC. For both water and lipid, the midpoint of the phase transition (Tm,MAS) is marked with dashed vertical lines. Solid vertical lines show the normal Tm (red), and 0°C (blue). To see this figure in color, go online. Biophysical Journal 2016 111, 1965-1973DOI: (10.1016/j.bpj.2016.09.027) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 4 Schematic model of the geometry of densely packed LUVs. (A) Hexagonal dense packing of hard-sphere LUVs with a 200 nm diameter is shown. (B) Enlargement of the boxed area from (A) is provided. Dimensions of the bilayer (5 nm) and associated hydration water (2.5 nm) are indicated. The bar graph indicates the volumetric breakdown of water inside the LUVs (INT), between vesicles (EXT), hydration water layers (HYD), and the lipids themselves (LIP). To see this figure in color, go online. Biophysical Journal 2016 111, 1965-1973DOI: (10.1016/j.bpj.2016.09.027) Copyright © 2016 Biophysical Society Terms and Conditions