Figure 2 Lifelong influences on the gut microbiome from

Slides:



Advertisements
Similar presentations
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Advertisements

Figure 3 Low-grade inflammation in FGID
Figure 4 The gut microbiota directly influences T-cell differentiation
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Interactions between adipose, the microbiome and kidney
Figure 1 Contribution of the gut microbiota
Figure 4 Activation of clopidogrel via cytochrome P450
Figure 2 Proinflammatory mechanisms in CKD
Figure 5 Therapeutic paradigms for interfering with the brain–gut axis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Gut microorganisms at the intersection of several diseases
Figure 5 Lipid droplet consumption
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 The microbiome–gut–brain axis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Organs involved in coeliac-disease-associated autoimmunity
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Biosimilar development process
Figure 3 The 'leaky gut' hypothesis
Figure 2 Effect of PPIs on gastric physiology
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Schematic outlining the results of Buffington et al.
Figure 6 Combination therapy for HCC
Figure 2 Modelling the effect of HCV treatment on reinfection in people who inject drugs Figure 2 | Modelling the effect of HCV treatment on reinfection.
Figure 4 Proinflammatory immune cells and their crosstalk in patients with IBD Figure 4 | Proinflammatory immune cells and their crosstalk in patients.
Figure 1 Definition and concept of ACLF
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Switching of biologic agents and biosimilars
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Cardiol. doi: /nrcardio
to the liver and promote patient-derived xenograft tumour growth
Figure 7 Example colonic high-resolution manometry
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Environmental factors contributing to IBD pathogenesis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Clinical algorithms in the management of NASH and diabetes mellitus Figure 3 | Clinical algorithms in the management of NASH and diabetes mellitus.
Figure 2 13C-octanoic acid gastric emptying breath test
Figure 1 Median coverage and distribution by
Figure 2 A model for the future analysis
in the UK (1961–2012), France (1961–2014) and Italy (1961–2010)
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Possible therapeutic targets to decrease hepatic steatosis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 The gut–liver relationship in PSC
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Volume 139, Issue 6, Pages (December 2010)
Figure 1 Brain–gut axis Brain–gut axis. Schematic of the brain–gut axis, including inputs from the gut microbiota, the ENS, the immune system and the external.
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 The current model of the pathogenesis of SLE
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Assessment of colonic transit time with radiopaque markers
Figure 2 New therapeutic approaches in IBD with their specific targets
Figure 5 Systems biological model of IBS
Figure 5 PPIs and adverse events with proven and unproven causality
Figure 4 Local species pools that contribute to the
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 New therapeutic approaches in IBD therapy based on blockade of T-cell homing and retention Figure 1 | New therapeutic approaches in IBD therapy.
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 NAFLD pathogenesis
Figure 1 Colonic inflammation in IBD and link to the gut microbiota
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Classifications and appearance of CCAs
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Presentation transcript:

Figure 2 Lifelong influences on the gut microbiome from conception to adult life lead to dysbiosis and development of IBD Figure 2 | Lifelong influences on the gut microbiome from conception to adult life lead to dysbiosis and development of IBD. The gut microbiome is susceptible to the influence of host genetics and environmental influences throughout childhood and adult life. The resultant alterations in taxonomic composition and function contribute to the development of intestinal inflammation in IBD. Ananthakrishnan, A. N. et al. (2017) Environmental triggers in IBD: a review of progress and evidence Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2017.136