Projectile Motion Example: After the semester is over, Herman discovers that the math department has changed textbooks (again) so the bookstore.

Slides:



Advertisements
Similar presentations
Operations on Rational Expressions Review
Advertisements

Objective SWBAT simplify rational expressions, add, subtract, multiply, and divide rational expressions and solve rational equations.
10-5 Addition and Subtraction: Unlike Denominators  Standard 13.0: Add and subtract rational expressions.
Section 6.1 Rational Expressions.
Lesson 8-1: Multiplying and Dividing Rational Expressions
Rational Expressions To add or subtract rational expressions, find the least common denominator, rewrite all terms with the LCD as the new denominator,
MTH 092 Section 12.1 Simplifying Rational Expressions Section 12.2
Algebraic Fractions and Rational Equations. In this discussion, we will look at examples of simplifying Algebraic Fractions using the 4 rules of fractions.
Chapter 9 Rational Expressions In Math, “Rational Numbers” are just numbers that can be written as fractions: 2 = 2/1.1 = 1/ = -3 ¾ = -15/4 and.
1.1 Linear Equations A linear equation in one variable is equivalent to an equation of the form To solve an equation means to find all the solutions of.
Operations on Rational Expressions Digital Lesson.
Fractions Chapter Simplifying Fractions Restrictions Remember that you cannot divide by zero. You must restrict the variable by excluding any.
MATH 2A CHAPTER EIGHT POWERPOINT PRESENTATION
Chapter 6 Section 6 Objectives 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Solving Equations with Rational Expressions Distinguish between.
Chapter 5 Rational Expressions Algebra II Notes Mr. Heil.
Lesson 8-1: Multiplying and Dividing Rational Expressions
Section R5: Rational Expressions
EXAMPLE 2 Rationalize denominators of fractions Simplify
9.2 Adding and Subtracting Rational Expressions Least Common Denominator of a polynomial of a polynomial.
6.1 The Fundamental Property of Rational Expressions Rational Expression – has the form: where P and Q are polynomials with Q not equal to zero. Determining.
Warm-up Given these solutions below: write the equation of the polynomial: 1. {-1, 2, ½)
Rational Expressions.
R7 Rational Expressions. Rational Expressions An expression that can be written in the form P/Q, where P and Q are polynomials and Q is not equal to zero.
Rational Functions. To sketch the graph of a rational function: Determine if the function points of discontinuity for the.
RATIONAL EXPRESSIONS. EVALUATING RATIONAL EXPRESSIONS Evaluate the rational expression (if possible) for the given values of x: X = 0 X = 1 X = -3 X =
 Inverse Variation Function – A function that can be modeled with the equation y = k/x, also xy = k; where k does not equal zero.
RATIONAL EXPRESSIONS. Definition of a Rational Expression A rational number is defined as the ratio of two integers, where q ≠ 0 Examples of rational.
Simplify a rational expression
Operations on Rational Expressions. Rational expressions are fractions in which the numerator and denominator are polynomials and the denominator does.
Chapter 11 Sections 11.1, Rational Expressions.
Chapter 12 Final Exam Review. Section 12.4 “Simplify Rational Expressions” A RATIONAL EXPRESSION is an expression that can be written as a ratio (fraction)
Complete Solutions to Practice Test What are the solutions to the quadratic equation  A. 3, 6  B. 6, 6  C. 3, 12  D. 4, 9  E. -4, -9 Factor.
RATIONAL EXPRESSION REVIEW A rational expression is a fraction in which the numerator or denominator is a variable expression (such as a polynomial). A.
Add or subtract with like denominators
Chapter 12 Rational Expressions and Functions 12 – 1 Inverse Variation If you are looking at the relationship between two things and one increases as the.
Rational Functions. Do Now Factor the following polynomial completely: 1) x 2 – 11x – 26 2) 2x 3 – 4x 2 + 2x 3) 2y 5 – 18y 3.
Please complete the Prerequisite Skills on Page 548 #4-12
Solving Rational Equations
1/20/ :24 AM10.3 Multiplying and Dividing Expressions1 Simplify, Multiply and Divide Rational Expressions Section 8-2.
Secondary Math SOLVING RATIONAL EQUATIONS. No Warm Up Get out homework 3-5 Long division of polynomials so that we can correct it!
Rational Expressions Simplifying Rational Expressions.
October 31 st copyright2009merrydavidson. Simplifying Rational Expressions What is the difference between a factor and a term? TERMS are separated by.
9.1 Simplifying Rational Expressions Objectives 1. simplify rational expressions. 2. simplify complex fractions.
What is an Equation  An equation is an expression with an ‘equal’ sign and another expression.  EXAMPLE:  x + 5 = 4  2x – 6 = 13  There is a Left.
Operations on Rational Expressions MULTIPLY/DIVIDE/SIMPLIFY.
Chapter 6 Rational Expressions and Equations
Section R.6 Rational Expressions.
Chapter 8 Rational Expressions.
EXAMPLE 2 Rationalize denominators of fractions Simplify
CHAPTER R: Basic Concepts of Algebra
Chapter 9 Rational Expressions
Operations on Rational Expressions
Rational Expressions and Equations
Look for common factors.
Chapter 7 Rational Expressions
Simplify, Multiply and Divide Rational Expressions
Simplifying Rational Expressions
Simplify, Multiply and Divide Rational Expressions
Rational Expressions and Equations
Rational Expressions and Equations
Simplify, Multiply and Divide Rational Expressions
Simplifying Rational Expressions
Multiplying and Dividing Rational Expressions
Warm-up Solve.
Splash Screen.
Rational Expressions and Equations
A rational expression is a quotient of two polynomials
Concept 5 Rational expressions.
Dear Power point User, This power point will be best viewed as a slideshow. At the top of the page click on slideshow, then click from the beginning.
Presentation transcript:

Projectile Motion Example: After the semester is over, Herman discovers that the math department has changed textbooks (again) so the bookstore won't buy back his nearly-new book. Herman goes to the roof of the math building, which is 160 feet high, and chucks his book straight down at 48 feet per second. How many seconds does it take his book to strike the ground? Use the formula h(t) = –16t 2 – 48t I need to find the time for the book to reach a height of zero ("zero" being "ground level"), so: 0 = –16t 2 – 48t Factor out -16 so it is in standard form. 0 = -16(t 2 + 3t – 10) You can now divide both sides by -16 to simplify. t 2 + 3t – 10 = 0 (t + 5)(t – 2) = 0 t = –5 or t = 2 t = -5 does not make sense because time cant be negative, so Correct answer is t=2 seconds. CONCLUSION: It takes 2 seconds for the book to strike the ground.

CHAPTER 8 RATIONAL EXPRESSION REVIEW A rational expression is a fraction in which the numerator or denominator is a variable expression (such as a polynomial). A rational expression is undefined if the denominator has a value of 0. A rational expression is in SIMPLEST form when the numerator and denominator have no common factors other than 1. Reducing to simplest form – factor the numerator and denominator, then cancel out any common factors in the numerator and denominator (not common factors that are both in the numerator or both in the denominator, e.g. side by side). Multiplying Rational Expressions – factor the numerators and denominators then cancel out common factors as above, then multiply the numerators and multiply the denominators. Dividing Rational Expressions – change to a multiplication problem by changing the DIVISOR into its RECIPROCAL. Example: Put each polynomial in standard form, flip divisor (expression to the right of ÷) then completely factor each polynomial After factoring, cancel out common FACTORS between numerators and denominators

Adding and Subtracting Rational Expressions – Step 1: Factor the denominators, then find the LCM. The LCM of two polynomials is the simplest polynomial that contains the factors of each polynomial. To find the LCM of two or more polynomials, first factor each polynomial completely. The LCM is the product of each factor the greater number of times it occurs in any one factorization. Step 2: Change each rational expression so that the new denominator will be the LCM. You will multiply the numerator and denominator of each expression by whatever it takes to get the LCM as the new denominator. Step 3: Add the two new fractions by adding the numerators and keeping the denominator (the LCM) the same. Step 4: Now factor the resulting expression and cancel out any common factors in the numerator and denominator. Simplify Complex Fractions – Complex fractions are just rational expressions with fractions within fractions. To simplify, find the LCM of all the denominators of every fraction in the expression, then multiply the main numerator and denominator by that LCM. Then simplify as usual. LCD= x 3

WORK Rate of Work * Time Worked = Part of Tasked Completed If someone can do a job in 60min, their rate of work is 1/60min. If someone else can do the same job in 40minutes, their rate of work is 1/40min. The TIME to get the same job done TOGETHER can be found by Adding their parts together to make 1 whole job. Solving Equations with Fractions – multiply BOTH SIDES of the equation by the LCM of all denominators in the equation. Then solve as usual. Make sure you know the restrictions. The solution cannot be a value that is not in the domain. That is, it cannot be a value that would make any of the original fractions undefined. If the equation is one fraction set equal to another, this is called a PROPORTION. Solve by CROSS-MULTIPLYING, then isolating the variable. x = 0 or x = -1 would make one of these fractions undefined. Cross-multiply Use dist. prop. to simplify. If equation is degree 2, then it is a quadratic equation. Put it in standard form (0 on one side). Factor and use zero-product rule to solve for x.