Normal Distribution: Finding Probabilities

Slides:



Advertisements
Similar presentations
Surds: Multiplying 5 × 3 6 × 3 24 × 3 Silent Teacher
Advertisements

Proportion: Inverse proportion (x and y)
Fractions: Four operations: setting them up
Factors, Multiples, Primes: Highest common factor
Trigonometry: Missing Sides
Factors, Multiples, Primes: Product of prime factors
Probability: Tree Diagrams – no replacement
Brackets: Expanding double brackets 1
Linear simultaneous Equations: Eliminating the variable
Decimals: Subtracting decimals – carry
Calculate Length of Arcs
Percentages: Calculating Percentage Change
Fractions of Amounts: Reverse
Integration: Definite Integration
Brackets: Multiplies to…, adds to… (positive)
Rounding: 1, 2, 3 decimal places
Decimals: Dividing decimals
Binomial Distribution: Inequalities for cumulative probabilities
Fractions: Subtracting fractions with different denominators
Polynomials 5: The Factor theorem
Standard form: Standard form to small numbers
Rounding: 1 Decimal Place
Fractions: Unit fractions of amounts
Volume: Volume of prisms
Exchange Rates $4=£1 $1=£?? $1=£5 £1=$?? $
Averages and Range: Median from a list of data
Ratio: Sharing in a Ratio 2
Fractions: Multiplying with mixed numbers
Simplifying Expressions: Adding & subtracting like terms
Rounding and estimating: Upper and Lower Bounds
Fractions: Dividing with mixed numbers
For more videos visit mrbartonmaths.com/videos
Ratio: Simplifying ratio
Proportion: Direct proportion (rulers)
Powers and indicies: Raising to another exponent
Determining if Vectors are Parallel
Ratio: Sharing in a Ratio 3
Probability: Probability from Venn Diagrams
Rounding: 1 Decimal Place – version 2
Factors, Multiples, Primes: Lowest common multiple
Changing the Subject of a Formula: One Step Subtraction
Linear simultaneous Equations: Make x the same (step 2*)
Fractions: Simplifying Fractions
Sequences: Finding the nth term rule
Quadratic Equations: Solving by factorising
Ratio: Sharing in a Ratio 1
Fractions: Dividing fractions by integers
Proportion: Direct proportion (x and y)
Vectors: Multiplying by a scalar
Averages and Range: Mean from a list of data – version 2
Expanding Brackets: Single brackets with
Fractions: Dividing integers by fractions
Ratio: Sharing in a Ratio 3
Fractions: Subtracting fractions with different denominators
Surds: Multiplying in double brackets
Vectors: Adding and subtracting
Solving linear equations: Variable on both sides
Fractions: Adding and Subtracting mixed numbers
Brackets: Expanding double brackets 3
Inequalities: Listing numbers with division
Powers and indices: Fractional Indices
Fractions of Amounts Find ¼ of £24 = Find ¾ of £24 = Find ½ of £48 =
Standard form: Standard form to large numbers
Median from a list of data:
Decimals: Subtracting decimals – carry
Decimals: Adding decimals – carry
Algebra: Completing the square 2
Standard From: Subtracting in standard form
Direct Proportion: equations
Converting from denary to different bases
Presentation transcript:

Normal Distribution: Finding Probabilities Silent Teacher Intelligent Practice Narration Your Turn 𝐹𝑜𝑟 𝑋~𝑁 100,10 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑃 85<𝑋<115 =𝑝 𝑃 𝑋<110 =𝑝 Practice

𝑃 85<𝑋<115 =𝑝 Lower: Upper: 𝜎: 𝜇: 𝑃 𝑋<110 =𝑝 Worked Examples Your Turn 𝐹𝑜𝑟 𝑋~𝑁 100,10 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑃 85<𝑋<115 =𝑝 Lower: Upper: 𝜎: 𝜇: 𝑃 𝑋<110 =𝑝 𝐹𝑜𝑟 𝑋~𝑁 100,10 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑃 92<𝑋<107 =𝑝 Lower: Upper: 𝜎: 𝜇: 𝑃 𝑋<123 =𝑝

𝑃 95<𝑋<105 =𝑝 𝑃 95<𝑋<105 =𝑝 𝑃 90<𝑋<110 =𝑝 𝐴𝑙𝑙 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑡𝑜 4.𝑑.𝑝 𝐹𝑜𝑟 𝑋~𝑁 100,10 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝐹𝑜𝑟 𝑋~𝑁 100,20 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑃 95<𝑋<105 =𝑝 𝑃 95<𝑋<105 =𝑝 𝑃 90<𝑋<110 =𝑝 𝑃 90<𝑋<110 =𝑝 𝑃 90<𝑋<100 =𝑝 𝑃 50<𝑋<100 =𝑝 𝑃 50<𝑋<100 =𝑝 𝐹𝑜𝑟 𝑋~𝑁 90,20 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑃 40<𝑋<100 =𝑝 𝑃 95<𝑋<105 =𝑝 𝑃 80<𝑋<140 =𝑝 𝑃 90<𝑋<110 =𝑝 𝑃 100<𝑋<160 =𝑝

𝑃 95<𝑋<105 =𝑝 𝑃 95<𝑋<105 =𝑝 𝑃 90<𝑋<110 =𝑝 𝐴𝑙𝑙 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑡𝑜 4.𝑑.𝑝 𝐹𝑜𝑟 𝑋~𝑁 100,10 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝐹𝑜𝑟 𝑋~𝑁 100,20 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑃 95<𝑋<105 =𝑝 𝑃 95<𝑋<105 =𝑝 𝑝=0.3829 𝑝=0.1974 𝑃 90<𝑋<110 =𝑝 𝑃 90<𝑋<110 =𝑝 𝑝=0.6827 𝑝=0.3829 𝑃 90<𝑋<100 =𝑝 𝑃 50<𝑋<100 =𝑝 𝑝=0.3413 𝑝=0.4937 𝑃 50<𝑋<100 =𝑝 𝐹𝑜𝑟 𝑋~𝑁 90,20 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑝=0.5000 𝑃 40<𝑋<100 =𝑝 𝑃 95<𝑋<105 =𝑝 𝑝=0.5000 𝑝=0.1746 𝑃 80<𝑋<140 =𝑝 𝑃 90<𝑋<110 =𝑝 𝑝=9772 𝑝=0.3413 𝑃 100<𝑋<160 =𝑝 𝑝=0.5000

𝑃 𝑋<105 =𝑝 𝑃 𝑋<105 =𝑝 𝑃 𝑋<110 =𝑝 𝑃 𝑋<90 =𝑝 𝑃 𝑋<150 =𝑝 𝐴𝑙𝑙 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑡𝑜 4.𝑑.𝑝 𝐹𝑜𝑟 𝑋~𝑁 100,10 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝐹𝑜𝑟 𝑋~𝑁 100,5 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑃 𝑋<105 =𝑝 𝑃 𝑋<105 =𝑝 𝑃 𝑋<110 =𝑝 𝑃 𝑋<90 =𝑝 𝑃 𝑋<150 =𝑝 𝑃 𝑋<75 =𝑝 𝐹𝑜𝑟 𝑋~𝑁 100,100 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝐹𝑜𝑟 𝑋~𝑁 105,5 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑃 𝑋<105 =𝑝 𝑃 𝑋<105 =𝑝 𝑃 𝑋<90 =𝑝 𝑃 𝑋<110 =𝑝 𝑃 𝑋≤90 =𝑝 𝑃 𝑋<130 =𝑝

𝑃 𝑋<105 =𝑝 𝑃 𝑋<105 =𝑝 𝑃 𝑋<110 =𝑝 𝑃 𝑋<90 =𝑝 𝑃 𝑋<150 =𝑝 𝐴𝑙𝑙 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑡𝑜 4.𝑑.𝑝 𝐹𝑜𝑟 𝑋~𝑁 100,10 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝐹𝑜𝑟 𝑋~𝑁 100,5 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑃 𝑋<105 =𝑝 𝑃 𝑋<105 =𝑝 𝑝=0.6915 𝑝=0.8413 𝑃 𝑋<110 =𝑝 𝑃 𝑋<90 =𝑝 𝑝=0.8413 𝑝=0.0227 𝑃 𝑋<150 =𝑝 𝑃 𝑋<75 =𝑝 𝑝=1.0000 𝑝=0.0000 𝐹𝑜𝑟 𝑋~𝑁 100,100 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝐹𝑜𝑟 𝑋~𝑁 105,5 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑃 𝑋<105 =𝑝 𝑃 𝑋<105 =𝑝 𝑝=0.6915 𝑝=0.5000 𝑃 𝑋<90 =𝑝 𝑃 𝑋<110 =𝑝 𝑝=0.1587 𝑝=0.8413 𝑃 𝑋≤90 =𝑝 𝑃 𝑋<130 =𝑝 𝑝=0.1587 𝑝=1.0000

𝑃 𝑋>105 =𝑝 𝑃 𝑋>105 =𝑝 𝑃 𝑋<95 =𝑝 𝑃 𝑋<95 =𝑝 𝑃 𝑋≥95 =𝑝 𝐴𝑙𝑙 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑡𝑜 4.𝑑.𝑝 𝐹𝑜𝑟 𝑋~𝑁 100,10 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝐹𝑜𝑟 𝑋~𝑁 100,35 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑃 𝑋>105 =𝑝 𝑃 𝑋>105 =𝑝 𝑃 𝑋<95 =𝑝 𝑃 𝑋<95 =𝑝 𝑃 𝑋≥95 =𝑝 𝑃 𝑋>64 =𝑝 𝐹𝑜𝑟 𝑋~𝑁 100,25 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝐹𝑜𝑟 𝑋~𝑁 95,5 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑃 𝑋>105 =𝑝 𝑃 𝑋>105 =𝑝 𝑃 𝑋<95 =𝑝 𝑃 𝑋<95 =𝑝 𝑃 𝑋≥80 =𝑝 𝑃 𝑋>100 =𝑝

𝑃 𝑋>105 =𝑝 𝑃 𝑋>105 =𝑝 𝑃 𝑋<95 =𝑝 𝑃 𝑋<95 =𝑝 𝑃 𝑋≥95 =𝑝 𝐴𝑙𝑙 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑡𝑜 4.𝑑.𝑝 𝐹𝑜𝑟 𝑋~𝑁 100,10 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝐹𝑜𝑟 𝑋~𝑁 100,35 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑃 𝑋>105 =𝑝 𝑃 𝑋>105 =𝑝 𝑝=0.3085 𝑝=0.1990 𝑃 𝑋<95 =𝑝 𝑃 𝑋<95 =𝑝 𝑝=0.3085 𝑝=0.1990 𝑃 𝑋≥95 =𝑝 𝑃 𝑋>64 =𝑝 𝑝=0.6915 𝑝=1.0000 𝐹𝑜𝑟 𝑋~𝑁 100,25 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝐹𝑜𝑟 𝑋~𝑁 95,5 2 , 𝑓𝑖𝑛𝑑 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑃 𝑋>105 =𝑝 𝑃 𝑋>105 =𝑝 𝑝=0.1587 𝑝=0.0227 𝑃 𝑋<95 =𝑝 𝑃 𝑋<95 =𝑝 𝑝=0.1587 𝑝=0.5000 𝑃 𝑋≥81 =𝑝 𝑃 𝑋>100 =𝑝 𝑝=0.9999 𝑝=0.1587