Volume 28, Issue 4, Pages (February 2014)

Slides:



Advertisements
Similar presentations
A Histone H3 Lysine-27 Methyltransferase Complex Represses Lateral Root Formation in Arabidopsis thaliana  Gu Xiaofeng , Xu Tongda , He Yuehui   Molecular.
Advertisements

Volume 24, Issue 6, Pages (March 2013)
JAV1 Controls Jasmonate-Regulated Plant Defense
Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis
Arabidopsis KNOXI Proteins Activate Cytokinin Biosynthesis
The Stem Cell Concept in Plants
Volume 21, Issue 4, Pages (October 2011)
DELLAs Modulate Jasmonate Signaling via Competitive Binding to JAZs
Volume 6, Issue 6, Pages (November 2013)
Volume 24, Issue 4, Pages (February 2013)
Volume 27, Issue 22, Pages e5 (November 2017)
Volume 19, Issue 2, Pages (August 2010)
Volume 24, Issue 2, Pages (January 2013)
Spatiotemporal Brassinosteroid Signaling and Antagonism with Auxin Pattern Stem Cell Dynamics in Arabidopsis Roots  Juthamas Chaiwanon, Zhi-Yong Wang 
Zhongjuan Zhang, Elise Tucker, Marita Hermann, Thomas Laux 
Jun-Ho Ha, Hyo-Jun Lee, Jae-Hoon Jung, Chung-Mo Park 
Volume 85, Issue 2, Pages (January 2015)
Volume 13, Issue 1, Pages (July 2007)
Volume 105, Issue 6, Pages (June 2001)
Volume 29, Issue 2, Pages (February 2008)
Temporal Control of Plant Organ Growth by TCP Transcription Factors
Volume 23, Issue 20, Pages (October 2013)
Yvonne Stahl, René H. Wink, Gwyneth C. Ingram, Rüdiger Simon 
MiR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana  Jia-Wei Wang, Benjamin Czech, Detlef Weigel 
Volume 21, Issue 12, Pages (June 2011)
Volume 26, Issue 11, Pages (June 2016)
Volume 6, Issue 5, Pages (September 2013)
Volume 17, Issue 5, Pages (October 2016)
Volume 43, Issue 2, Pages e7 (October 2017)
Takatoshi Kiba, Kentaro Takei, Mikiko Kojima, Hitoshi Sakakibara 
Volume 34, Issue 2, Pages (July 2015)
Volume 39, Issue 2, Pages (October 2016)
Volume 24, Issue 6, Pages (March 2013)
Volume 23, Issue 18, Pages (September 2013)
Volume 19, Issue 1, Pages (July 2010)
FT Protein Acts as a Long-Range Signal in Arabidopsis
Volume 17, Issue 1, Pages (July 2009)
The WUSCHEL Related Homeobox Protein WOX7 Regulates the Sugar Response of Lateral Root Development in Arabidopsis thaliana  Danyu Kong, Yueling Hao, Hongchang.
Volume 25, Issue 23, Pages (December 2015)
Volume 26, Issue 12, Pages (June 2016)
Volume 28, Issue 4, Pages (February 2014)
Volume 9, Issue 7, Pages (July 2016)
Volume 22, Issue 19, Pages (October 2012)
Volume 132, Issue 6, Pages (March 2008)
The Arabidopsis Transcription Factor AtTCP15 Regulates Endoreduplication by Modulating Expression of Key Cell-cycle Genes  Li Zi-Yu , Li Bin , Dong Ai-Wu.
Whole-Genome Analysis of Muscle Founder Cells Implicates the Chromatin Regulator Sin3A in Muscle Identity  Krista C. Dobi, Marc S. Halfon, Mary K. Baylies 
E2a Is Necessary for Smad2/3-Dependent Transcription and the Direct Repression of lefty during Gastrulation  Andrea E. Wills, Julie C. Baker  Developmental.
Volume 37, Issue 3, Pages (May 2016)
Drosophila Maelstrom Ensures Proper Germline Stem Cell Lineage Differentiation by Repressing microRNA-7  Jun Wei Pek, Ai Khim Lim, Toshie Kai  Developmental.
Physcomitrella patens Auxin-Resistant Mutants Affect Conserved Elements of an Auxin- Signaling Pathway  Michael J. Prigge, Meirav Lavy, Neil W. Ashton,
Arabidopsis NF-YCs Mediate the Light-Controlled Hypocotyl Elongation via Modulating Histone Acetylation  Yang Tang, Xuncheng Liu, Xu Liu, Yuge Li, Keqiang.
Volume 19, Issue 6, Pages (December 2010)
Volume 15, Issue 6, Pages (December 2008)
Xiang Han, Hao Yu, Rongrong Yuan, Yan Yang, Fengying An, Genji Qin
Transcriptional Control of a Plant Stem Cell Niche
Volume 26, Issue 7, Pages (April 2016)
Volume 22, Issue 18, Pages (September 2012)
Clade I TGAs are required for BOP1 induction of ATH1 expression.
DRN and DRNL regulate STM expression via binding to a conserved promoter motif. DRN and DRNL regulate STM expression via binding to a conserved promoter.
Volume 25, Issue 7, Pages e4 (November 2018)
Volume 24, Issue 16, Pages (August 2014)
Volume 18, Issue 24, Pages (December 2008)
Volume 15, Issue 1, Pages (July 2008)
Volume 19, Issue 6, Pages (December 2010)
Volume 43, Issue 5, Pages e5 (December 2017)
Volume 26, Issue 4, Pages (August 2013)
Wang Long , Mai Yan-Xia , Zhang Yan-Chun , Luo Qian , Yang Hong-Quan  
Arabidopsis PLETHORA Transcription Factors Control Phyllotaxis
Volume 11, Issue 7, Pages (July 2018)
Volume 30, Issue 4, Pages (August 2014)
Presentation transcript:

Volume 28, Issue 4, Pages 438-449 (February 2014) A Regulatory Framework for Shoot Stem Cell Control Integrating Metabolic, Transcriptional, and Phytohormone Signals  Christoph Schuster, Christophe Gaillochet, Anna Medzihradszky, Wolfgang Busch, Gabor Daum, Melanie Krebs, Andreas Kehle, Jan U. Lohmann  Developmental Cell  Volume 28, Issue 4, Pages 438-449 (February 2014) DOI: 10.1016/j.devcel.2014.01.013 Copyright © 2014 Elsevier Inc. Terms and Conditions

Developmental Cell 2014 28, 438-449DOI: (10.1016/j.devcel.2014.01.013) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 1 HEC1 Is a Relevant Direct Target of WUS (A) Quantification of HEC1 mRNA expression in inflorescence apices of p35S:WUS-GR plants after overnight mock and cycloheximide control (C + M) or dexamethasone induction in the presence of cycloheximide (C + D) by qRT-PCR. Four independent experiments were performed, each assayed in triplicates and normalized to the respective control. (B) Enrichment of HEC1 promoter fragments after ChIP-PCR and normalization to a control sequence downstream of HEC1. Crosses denote fragment with WUS consensus binding sequence. (C) HEC1 mRNA expression pattern in the inflorescence meristem as recorded by in situ hybridization. CZ, central zone; OC, organizing center. (D) Phenotypes of WT and pWUS:HEC1 plants; inset shows wus mutant apex. Arrow, arrested SAM. (E–H) In situ hybridization experiments on 21-day-old WT (E and G) and pWUS:HEC1 plants with intermediate phenotype (F and H). Upper panels show WUS expression (E and F), and lower panels show CLV3 expression (G and H). Scale bars, 1.5 cm (D); 50 μm (C and E–H). See also Figure S1. Developmental Cell 2014 28, 438-449DOI: (10.1016/j.devcel.2014.01.013) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 2 HEC1 Has Context-Dependent Stem Cell Control Functions (A–K) Wild-type plants (A–D) and hec1,2,3 mutant plants (E–H). Inactivation of HEC gene function led to infertile plants (E, arrow) with smaller shoot apical meristems (D, H, and I; p < 0.0001; WT: n = 26; hec1,2,3: n = 19), an enlarged CLV3 domain with increased CLV3 expression (B, F, and J), and a reduction of WUS expression (C, G, and K). (L–T) pCLV3:HEC1 apices (L and M; n = 105) with overproliferation phenotypes similar to clv3 mutants (Q). Neither pUFO:HEC1 (n = 50) nor GUS control plants (pCLV3:GUS: n = 80; pUFO:GUS: n = 20) showed phenotypic alterations (L). WUS and CLV3 expression was suppressed in pCLV3:HEC1 apices (N and O, compare to B and C), whereas WUS expression was expanded in clv3 mutants (S, compare to C). SAMs of pCLV3:HEC1 were massively enlarged compared to pCLV3:GUS controls (p < 0.0001; pCLV3:GUS: n = 15; pCLV3:HEC1: n = 23) (P); this phenotype was further enhanced in the clv3 background (p < 0.0001; pCLV3:HEC1 in clv3: n = 42; pCLV3:GUS in clv3: n = 36) (T). Error bars, SD. Asterisks indicate statistical significance (∗p < 0.05, ∗∗∗p < 0.0001). Scale bars, 1 mm (A, E, M, and Q), 50 μm (B, C, F, G, N, O, R, and S), and 20 μm (D and H). See also Figures S2–S5. Developmental Cell 2014 28, 438-449DOI: (10.1016/j.devcel.2014.01.013) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 3 HEC1 Interacts with the SPATULA bHLH Transcription Factor In Vivo (A) SPT expression in WT. (B) Representative images from a control p35S:GFP-HEC1/p35S:mCherry-NLS and a p35S:GFP-HEC1/p35S:mCherry-SPT infiltration into Nicotiana benthamiana mesophyll cells. (C) GFP lifetime of p35S:GFP-HEC1/p35S:mCherry-NLS and p35S:GFP-HEC1/p35S:mCherry-SPT as measured by FRET-FLIM. (D) SAM expansion driven by pCLV3:HEC1 was supressed in spt mutants. P, flower primordia. (E) SAM size of WT (n = 15), spt (n = 10), hec1,2,3 (n = 12), and hec1,2,3, spt (n = 8) mutants. (F) Phenotypic analysis of pCLV3:HEC1-spt (n = 16), pCLV3:HEC1-hec1,2,3 (n = 7), pCLV3:SPT (n = 34), pCLV3:GUS-pCLV3:HEC1 (n = 31), and pCLV3:SPT-pCLV3:HEC1 (n = 34) T1 plants. Error bars, SD. Asterisks indicate statistical significance (∗p < 0.05, ∗∗∗p < 0.0001). Scale bars, 50 μm. See also Figure S6. Developmental Cell 2014 28, 438-449DOI: (10.1016/j.devcel.2014.01.013) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 4 Genome-wide Regulatory Potential of HEC1 (A) Overrepresented GO categories among HEC1 response genes (FDR p < 0.05): (1) response to stimulus, (2) metabolic process, (3) regulation of metabolic process, and (4) transport. Ind., genes induced by HEC1; repr., genes repressed by HEC1. (B) Venn diagram of HEC1 and WUS response genes. (C) Response of shared target genes to WUS and HEC1 (Pearson correlation test: R = −0.68; p < 0.0001). (D) Expression of apex-specific HEC1 target genes during Arabidopsis development. Yellow indicates increased expression, and blue indicates reduced expression compared to the mean of all samples. See also Tables S1–S3. Developmental Cell 2014 28, 438-449DOI: (10.1016/j.devcel.2014.01.013) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 5 HEC1 Controls Cell-Cycle Genes and Cell Division Patterns in the SAM (A) Relative expression of cell-cycle genes from apex cluster in hec1,2,3 and the induced pAlcA:HEC1 plants. Expression levels are linearly transformed gcRMA expression estimates from duplicate Affymetrix Ath1 hybridizations. (B and C) Histone H4 expression in SAMs of hec1,2,3 (B) and wild-type plants (C). (D) Mitotic index in SAMs of hec1,2,3 (n = 12), WT (n = 11), and pCLV3:HEC1 (n = 9) plants. (E and F) Histone H4 expression in SAMs of WT (E) and pCLV3:HEC1 plants (F). Error bars, SD. Asterisks indicate statistical significance (∗p < 0.05, ∗∗p < 0.01). Scale bars, 50 μm. Developmental Cell 2014 28, 438-449DOI: (10.1016/j.devcel.2014.01.013) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 6 HEC1 Locally Controls Cytokinin Feedback Regulators (A and B) ARR5, ARR7, and ARR15 mRNA levels in apices of pAlcA:GUS and pAlcA:HEC1 plants after overnight induction (A) and in WT and hec1,2,3 mutants (B) measured by qRT-PCR. (C–H) mRNA expression patterns of ARR7 (C–E) and ARR15 (F–H) in SAMs of WT (C and F), pWUS:HEC1 with intermediate phenotype (D and G), and pCLV3:HEC1 (E and H) plants. Arrowheads indicate local accumulation of ARR mRNAs at sites of elevated HEC1 activity. Error bars, SD. Asterisks indicate statistical significance (∗p < 0.05, ∗∗p < 0.01). Scale bars, 50 μm. Developmental Cell 2014 28, 438-449DOI: (10.1016/j.devcel.2014.01.013) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 7 A Feedback System for Plant Stem Cell Control (A and B) pTCS:GFP reporter activity in WT (A) and pCLV3:HEC1 (B) inflorescence meristems. P, flower primordia; arrowhead, CZ. (C–E) GFP fluorescence in pML1:HEC1-GFP (C) or ARR7-GFP (D and E) under the control of ML1 promoter. Arrows mark the L2. (F and G) GFP mRNA localization in SAMs carrying pML1:ARR7-GFP and pML1:GFP-ARR7 transgenes, respectively. (H and I) GFP fluorescence in pML1:ARR7-GFP plants upon 2 hr of mock and Cytokinin (BA) treatment. The color-code depicts low (blue) to high (yellow-white) fluorescence intensity. (J) Quantification of the normalized fluorescence intensity. Cytokinin does not influence the mobility of the ARR7-GFP protein. (K–N) WUS mRNA expression in pCLV3:GUS-pCLV3:HEC1 (K), pCLV3:AM7/15-pCLV3:HEC1 (L), pCLV3:GUS (M), and pCLV3:ARR7(D > E) (N) inflorescence meristems. Of seven independent pCLV3:ARR7(D > E) T1 lines, five showed SAM phenotypes. (O) Hypothetical model of HEC network connectivity in stem cell control. Error bars, SD. Asterisks indicate statistical significance (∗∗∗p < 0.001). Scale bars, 50 μM (A, B, K, L, M, N), 20 μM (C, D, E, H, I). See also Figure S7. Developmental Cell 2014 28, 438-449DOI: (10.1016/j.devcel.2014.01.013) Copyright © 2014 Elsevier Inc. Terms and Conditions