CHAPTER 1 BASIC CONCEPT All the programs in this file are selected from Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed “Fundamentals of Data Structures.

Slides:



Advertisements
Similar presentations
MATH 224 – Discrete Mathematics
Advertisements

CHAPTER 2 ALGORITHM ANALYSIS 【 Definition 】 An algorithm is a finite set of instructions that, if followed, accomplishes a particular task. In addition,
Chapter 1 – Basic Concepts
1 Data Structures Performance Analysis. 2 Fundamental Concepts Some fundamental concepts that you should know: –Dynamic memory allocation. –Recursion.
Chapter 1 Basic Concepts Overview: System Life Cycle Algorithm Specification Data Abstraction Performance Analysis Performance Measurement.
Scott Grissom, copyright 2004 Chapter 5 Slide 1 Analysis of Algorithms (Ch 5) Chapter 5 focuses on: algorithm analysis searching algorithms sorting algorithms.
CHAPTER 11 Space and Time Complexity in Chapter 1 All the programs in this file are selected from Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed.
Data Structures Performance Analysis.
Analysis of Algorithms 7/2/2015CS202 - Fundamentals of Computer Science II1.
CHAPTER 1 BASIC CONCEPT All the programs in this file are selected from Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed “Fundamentals of Data Structures.
What is Program  A Set of Instructions  Data Structures + Algorithms  Data Structure = A Container stores Data  Algoirthm = Logic + Control.
CHAPTER 2 ALGORITHM ANALYSIS 【 Definition 】 An algorithm is a finite set of instructions that, if followed, accomplishes a particular task. In addition,
1 Chapter 2 Program Performance – Part 2. 2 Step Counts Instead of accounting for the time spent on chosen operations, the step-count method accounts.
Prof. Hsin-Mu (Michael) Tsai ( 蔡欣穆 ) Department of Computer Science and Information Engineering National Taiwan University BASICS.
Program Performance & Asymptotic Notations CSE, POSTECH.
C. – C. Yao Data Structure. C. – C. Yao Chap 1 Basic Concepts.
For Wednesday Read Weiss chapter 3, sections 1-5. This should be largely review. If you’re struggling with the C++ aspects, you may refer to Savitch, chapter.
SEARCHING, SORTING, AND ASYMPTOTIC COMPLEXITY Lecture 12 CS2110 – Fall 2009.
Discrete Structures Lecture 11: Algorithms Miss, Yanyan,Ji United International College Thanks to Professor Michael Hvidsten.
1 Recursion Algorithm Analysis Standard Algorithms Chapter 7.
Basic Concepts 2014, Fall Pusan National University Ki-Joune Li.
Chapter 1 1. Overview: System life cycle Requirements Analysis Bottom-up Top-down Design Data objects (abstract data type) and operations (algorithm)
Unit III : Introduction To Data Structures and Analysis Of Algorithm 10/8/ Objective : 1.To understand primitive storage structures and types 2.To.
Data Structures in C Networking Laboratory Chap. 1-1 Copyright(c) 2000, Sungkyunkwan University Chapter #1: BASIC CONCEPTS Fundamentals of Data Structures.
CS Data Structures Chapter 1 Basic Concepts.
Chapter 12 Recursion, Complexity, and Searching and Sorting
Complexity of Algorithms
Data Structure Introduction.
Algorithm Analysis CS 400/600 – Data Structures. Algorithm Analysis2 Abstract Data Types Abstract Data Type (ADT): a definition for a data type solely.
Algorithms and data structures: basic definitions An algorithm is a precise set of instructions for solving a particular task. A data structure is any.
Algorithm Analysis (Big O)
Software Learning Resource Service Platform BASIC CONCEPT CHAPTER 1 BASIC CONCEPT 1.
Program Performance 황승원 Fall 2010 CSE, POSTECH. Publishing Hwang’s Algorithm Hwang’s took only 0.1 sec for DATASET1 in her PC while Dijkstra’s took 0.2.
1 Chapter 2 Program Performance. 2 Concepts Memory and time complexity of a program Measuring the time complexity using the operation count and step count.
1 Chapter 2 Algorithm Analysis Reading: Chapter 2.
Basic Concepts 2011, Fall Pusan National University Ki-Joune Li.
Analysis of Algorithms Spring 2016CS202 - Fundamentals of Computer Science II1.
SPACE COMPLEXITY & TIME COMPLEXITY 1. ALGORITHMS COMPLEXITY 2.
2017, Fall Pusan National University Ki-Joune Li
Algorithm Analysis 1.
Chapter 2 Algorithm Analysis
Data Structures 1st Week
Analysis of Algorithms
Analysis of Algorithms
Chapter 1 Basic Concepts
Analysis of Algorithms
Introduction to Algorithms
What is an Algorithm? Algorithm Specification.
Data Structures (1/2) 內容:Basic Concepts, Arrays and Structures, Stacks and Queues, Lists, Trees, Graphs, Sorting, Hashing, Heap Structures, and Search.
Data Structure 김용성 Data Structure in C.
DATA STRUCTURES Introduction: Basic Concepts and Notations
Algorithm design and Analysis
Algorithm An algorithm is a finite set of steps required to solve a problem. An algorithm must have following properties: Input: An algorithm must have.
What is CS 253 about? Contrary to the wide spread belief that the #1 job of computers is to perform calculations (which is why the are called “computers”),
Algorithm Efficiency Chapter 10.
2018, Fall Pusan National University Ki-Joune Li
Data Structures-CSE207.
Analysis of Algorithms
Searching, Sorting, and Asymptotic Complexity
Searching, Sorting, and Asymptotic Complexity
Algorithms Analysis Algorithm efficiency can be measured in terms of:
Performance analysis of algorithms
At the end of this session, learner will be able to:
Discrete Mathematics 7th edition, 2009
CS210- Lecture 2 Jun 2, 2005 Announcements Questions
Data structures & Algorithm Strategies
Analysis of Algorithms
Algorithms and data structures: basic definitions
Algorithm Analysis How can we demonstrate that one algorithm is superior to another without being misled by any of the following problems: Special cases.
2019, Fall Pusan National University Ki-Joune Li
Presentation transcript:

CHAPTER 1 BASIC CONCEPT All the programs in this file are selected from Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed “Fundamentals of Data Structures in C”, Computer Science Press, 1992. CHAPTER 1

Data Structure What is data structure? Ans. Data structure探討一群相關資料的資料表示方 法與資料運作方法 目的 : 使用最有效率的方式,對一群相關資料進行處理 如何設計 : 1. 找出對該資料的各種運算 2. 考慮最適當的Data Structure,使得各種運算的 效率最佳 3. 設計一個完整的Algorithm CHAPTER 1

How to create programs Requirements: What inputs, functions, and outputs Analysis: bottom-up vs. top-down Design: data objects and operations Refinement and Coding Verification Program Proving Testing Debugging CHAPTER 1

Algorithm Definition An algorithm is a finite set of instructions that accomplishes a particular task. Criteria Input: zero more quantities are externally supplied. Output: at least one quantity is produced. definiteness: clear and unambiguous finiteness: terminate after a finite number of steps effectiveness: instruction is basic enough to be carried out CHAPTER 1

Algorithm One distinguishes between an algorithm and a program, the latter of which does not have to satisfy the fourth condition (Finiteness). For example, we can think of an operating system that continues in a wait loop until more jobs are entered. CHAPTER 1

在已排序的資料中找值18 Binary Search Sequential Search 第3次找到 第7次找到 3 4 6 8 9 15 CHAPTER 1

Translating a Problem into an Algorithm Devise a program that sorts a set of n>= 1 integers Solution I From those integers that are currently unsorted, find the smallest and place it next in the sorted list Solution II for (i= 0; i< n; i++){ Examine list[i] to list[n-1] and suppose that the smallest integer is list[min]; Interchange list[i] and list[min]; } CHAPTER 1

Translating a Problem into an Algorithm Solution III #define swap(x,y,t) ((t)= (x), (x)= (y), (y)= (t)) void sort(int list[], int n) { int i, j, min, temp; for (i= 0; i< n-1; i++){ min= i; for (j= i+1; j< n; j++){ if (list[j]< list[min]) min= j; } swap(list[i], list[min], temp); 上面swap意思即類似 void swap(int *x, int *y) { int temp= *x; *x= *y; *y= temp; } CHAPTER 1

Data Type Data Type A data type is a collection of objects and a set of operations that act on those objects. Example of "int" Objects: 0, +1, -1, ..., Int_Max, Int_Min Operations: arithmetic(+, -, *, /, and %), testing (equality/inequality), assigns, functions CHAPTER 1

Data encapsulation and Data abstraction Data encapsulation or Information hiding是把資料物件的內部程式碼內容隱藏不被外部的使用者知道 目的 : 1. 讓往後可能的修改能夠局限在此程式單元之中 2. 讓程式單元不需隨著ADT內部的表示方式的改 變而修改外部的使用方式 3. 可提高程式的可重用度,可讀性, 方便除錯… Data abstraction 是將一個資料物件的specification 和 implementation 分離 目的 : 只描述主要特徵而隱藏大部分的次要特徵,可以將複 雜的物件加以簡化 CHAPTER 1

Abstract Data Type 不管如何(How)作,只管作了什麼(What) Abstraction is … Abstract Data Type An abstract data type (ADT) is a data type that is organized in such a way that the specification of the objects and the operations on the objects is separated from the representation of the objects and the implementation of the operations. ADT Operations — only the operation name and its parameters are visible to the user — through interface Why abstract data type ? implementation-independent 不管如何(How)作,只管作了什麼(What) Abstraction is … Generalization of operations with unspecified implementation CHAPTER 1

Abstract data type model CHAPTER 1

Classifying the Functions of a Data Type Creator/constructor Create a new instance of the designated type Transformers Also create an instance of the designated type by using one or more other instances Observers/reporters Provide information about an instance of the type, but they do not change the instance CHAPTER 1

Structure 1. 1:Abstract data type Natural_Number (p *Structure 1.1:Abstract data type Natural_Number (p.17) structure Natural_Number is (denoted by Nat_No) objects: an ordered subrange of the integers starting at zero and ending at the maximum integer (INT_MAX) on the computer functions: for all x, y  Nat_Number; TRUE, FALSE  Boolean and where +, -, <, and == are the usual integer operations. Nat_No Zero ( ) ::= 0 Boolean Is_Zero(x) ::= if (x) return FALSE else return TRUE Nat_No Add(x, y) ::= if ((x+y) <= INT_MAX) return x+y else return INT_MAX Boolean Equal(x,y) ::= if (x== y) return TRUE else return FALSE Nat_No Successor(x) ::= if (x == INT_MAX) return x else return x+1 Nat_No Subtract(x,y) ::= if (x<y) return 0 else return x-y end Natural_Number Creator Observer Transformer CHAPTER 1

Play with ADT Add(Zero(),y) ::= return y Add(Successor(x),y) ::= return Successor(Add(x,y)) Equal(Zero(),Zero()) ::= return TRUE Equal(Successor(x),Zero()) ::= return FALSE Equal(Successor(x), Successor(y)) ::= return Equal(x, y) CHAPTER 1

Play with ADT (cont’d) 0Zero() 1Successor(Zero()) 2Successor(Successor(Zero())) 1 + 2 = ? … 1 + 2 == 3 ? CHAPTER 1

Recursive Algorithms Direct recursion Indirect recursion Functions call themselves Indirect recursion Functions call other functions that invoke the calling function again Any function that we can write using assignment, if-else, and while statements can be written recursively. CHAPTER 1

Recursive algorithm How to determine that express an algorithm recursively ? The problem itself is defined recursively Statements: if-else and while can be written recursively How to design recursive algorithm 1. 找出遞迴關係 找出遞迴關係才能夠對問題進行切割 2. 找出終止條件 找出終止條件避免無窮遞迴下去 非常重要!! CHAPTER 1

遞迴和迴圈的比較 遞迴的優點 : 簡潔易懂 缺點 : 執行效率差因為執行時需要對 遞迴副程式進行呼叫,由於呼叫遞 迴副程式需要處理額外的工作 缺點 : 執行效率差因為執行時需要對 遞迴副程式進行呼叫,由於呼叫遞 迴副程式需要處理額外的工作 迴圈的優點 : 執行效率佳 缺點 : 有的問題不易用迴圈來表示, 即使寫得出來也低階難懂。 如河內塔問題 哪些工作? Trace一個 CHAPTER 1

Binary Search int binsearch(int list[], int searchnum, int left, int right) {// search list[0]<= list[1]<=...<=list[n-1] for searchnum int middle; while (left<= right){ middle= (left+ right)/2; switch(compare(list[middle], searchnum)){ case -1: left= middle+ 1; break; case 0: return middle; case 1: right= middle- 1; } } return -1;} int compare(int x, int y) { if (x< y) return -1; else if (x== y) return 0; else return 1; } CHAPTER 1

Recursive Implementation of Binary Search int binsearch(int list[], int searchnum, int left, int right) {// search list[0]<= list[1]<=...<=list[n-1] for searchnum int middle; if (left<= right){ middle= (left+ right)/2; switch(compare(list[middle], searchnum)){ case -1:return binsearch(list, searchnum, middle+1, right); case 0: return middle; case 1: return binsearch(list, searchnum, left, middle- 1); } return -1; CHAPTER 1

河內塔問題 有三根木樁,在其中一根木樁上放上N個鐵盤,規則是: 1. 一次移動一個鐵盤. 2. 小的鐵盤永遠在大鐵盤的上方. 設三個木樁為x , y , z,數量為n,函式取名為為Hanoi (n , x , y , z) 1. 當N為1時表示只要再移動一次就完成工作.也就是只要把 一個鐵盤從x移到z就完成工作. 2. 當N不為1時作3個動作.ㄅ.執行 Hanoi(n-1,x,z,y); ㄆ.將一個鐵盤從x移到z; ㄇ.執行Hanoi(n-1,y,x,z); CHAPTER 1

CHAPTER 1

河內塔程式碼 void Hanoi(int n, char x, char y, char z) { if (n > 1) Hanoi(n-1,x,z,y); printf("Move disk %d from %c to %c.\n",n,x,z); Hanoi(n-1,y,x,z); } else CHAPTER 1

Hanoi (n , x , y , z) n=4 的結果 執行 Hanoi(3,x,z,y). 執行 Hanoi(2,x,y,z). 列印 Move disk 1 from x to y. 列印 Move disk 2 from x to z. 執行 Hanoi(1,y,x,z). 列印 Move disk 1 from y to z. 列印 Move disk 3 from x to y. 執行 Hanoi(2,z,x,y). 執行 Hanoi(1,z,y,x). 列印 Move disk 1 from z to x. 列印 Move disk 2 from z to y. CHAPTER 1

執行 Hanoi(1,z,y,x) 列印 Move disk 1 from z to x. 執行 Hanoi(1,x,z,y). 列印 Move disk 1 from x to y. 列印 Move disk 4 from x to z. 執行 Hanoi(3,y,x,z). 執行 Hanoi(2,y,z,x). 執行 Hanoi(1,y,x,z). 列印 Move disk 1 from y to z. 列印 Move disk 2 from y to x. 執行 Hanoi(1,z,y,x) 列印 Move disk 1 from z to x. 列印 Move disk 3 from y to z. 執行 Hanoi(2,x,y,z). 列印 Move disk 2 from x to z. CHAPTER 1

Performance Analysis (machine independent) Space and Time Does the program efficiently use primary and secondary storage? Is the program's running time acceptable for the task? Evaluate a program generally Does the program meet the original specifications of the task? Does it work correctly? Does the program contain documentation that show how to use it and how it works? Does the program effectively use functions to create logical units? Is the program's code readable? CHAPTER 1

Performance Analysis(Cont.) Practice Practice Practice Evaluate a program Meet specifications, Work correctly, Good user-interface, Well-documentation, Readable, Effectively use functions, Running time acceptable, Efficiently use space/storage How to achieve them? Good programming style, experience, and practice Discuss and think Think CHAPTER 1

I: instance (input, output) S(P)= c+ Sp(I) P: a program I: instance (input, output) The space needed is the sum of Fixed space and Variable space Fixed space: c Includes the instructions, variables, and constants Independent of the number and size of I/O Variable space: Sp(I) Includes dynamic allocation, functions' recursion Total space of any program S(P)= c+ Sp(Instance) CHAPTER 1

Recall: pass the address of the first element of the array & *Program 1.9: Simple arithmetic function (p.19) float abc(float a, float b, float c) { return a + b + b * c + (a + b - c) / (a + b) + 4.00; } *Program 1.10: Iterative function for summing a list of numbers (p.20) float sum(float list[ ], int n) { float tempsum = 0; int i; for (i = 0; i<n; i++) tempsum += list [i]; return tempsum; } Sabc(I) = 0 Ssum(I) = 0 Recall: pass the address of the first element of the array & pass by value CHAPTER 1

Program 1. 11: Recursive function for summing a list of numbers (p *Program 1.11: Recursive function for summing a list of numbers (p.20) float rsum(float list[ ], int n) { if (n) return rsum(list, n-1) + list[n-1]; return 0; } *Figure 1.1: Space needed for one recursive call of Program 1.11 (p.21) (以16bit x86 small/near為例) Ssum(I)=Ssum(n)=6n * CHAPTER 1

Time Complexity Total time How to evaluate? T(P)= compile time + run (or execution) time May run it many times without recompilation. Run time How to evaluate? + - * / … (最細的估計) Use the system clock 直接用量的比較省事 Number of steps performed (中等的估計) machine-independent Instance及所費時間函數的趨勢 (粗略的估計, p.39) Definition of a program step A program step is a syntactically or semantically meaningful program segment whose execution time is independent of the instance characteristics CHAPTER 1

Methods to compute the step count Introduce variable count into programs Tabular method Determine the total number of steps contributed by each statement steps_per_statement * frequency_for_that_statement s/e, steps/execution add up the contribution of all statements CHAPTER 1

Iterative summing of a list of numbers *Program 1.12: Program 1.10 with count statements (p.23) float sum(float list[ ], int n) { float tempsum = 0; count++; /* for assignment */ int i; for (i = 0; i < n; i++) { count++; /*for the for loop */ tempsum += list[i]; count++; /* for assignment */ } count++; /* last execution of for */ count++; /* for return */ return tempsum; } 2n + 3 steps CHAPTER 1

Program 1. 13: Simplified version of Program 1. 12 (p *Program 1.13: Simplified version of Program 1.12 (p.23) float sum(float list[ ], int n) { float tempsum = 0; int i; for (i = 0; i < n; i++) count += 2; count += 3; return 0; } 2n + 3 steps CHAPTER 1

Recursive summing of a list of numbers *Program 1.14: Program 1.11 with count statements added (p.24) float rsum(float list[ ], int n) { count++; /*for if conditional */ if (n) { count++; /* for return and rsum invocation */ return rsum(list, n-1) + list[n-1]; } count++; return list[0]; } 2n+2 steps CHAPTER 1

Matrix addition *Program 1.15: Matrix addition (p.25) void add( int a[ ] [MAX_SIZE], int b[ ] [MAX_SIZE], int c [ ] [MAX_SIZE], int rows, int cols) { int i, j; for (i = 0; i < rows; i++) for (j= 0; j < cols; j++) c[i][j] = a[i][j] +b[i][j]; } CHAPTER 1

Program 1. 16: Matrix addition with count statements (p *Program 1.16: Matrix addition with count statements (p.25) void add(int a[ ][MAX_SIZE], int b[ ][MAX_SIZE], int c[ ][MAX_SIZE], int row, int cols ) { int i, j; for (i = 0; i < rows; i++){ count++; /* for i for loop */ for (j = 0; j < cols; j++) { count++; /* for j for loop */ c[i][j] = a[i][j] + b[i][j]; count++; /* for assignment statement */ } count++; /* last time of j for loop */ } count++; /* last time of i for loop */ } 2rows * cols + 2 rows + 1 CHAPTER 1

Suggestion: Interchange the loops when rows >> cols *Program 1.17: Simplification of Program 1.16 (p.26) void add(int a[ ][MAX_SIZE], int b [ ][MAX_SIZE], int c[ ][MAX_SIZE], int rows, int cols) { int i, j; for( i = 0; i < rows; i++) { for (j = 0; j < cols; j++) count += 2; count += 2; } count++; } 2rows  cols + 2rows +1 Suggestion: Interchange the loops when rows >> cols CHAPTER 1

*Figure 1.2: Step count table for Program 1.10 (p.26) Tabular Method Iterative function to sum a list of numbers *Figure 1.2: Step count table for Program 1.10 (p.26) steps/execution CHAPTER 1

*Figure 1.3: Step count table for recursive summing function (p.27) Recursive Function to sum of a list of numbers *Figure 1.3: Step count table for recursive summing function (p.27) CHAPTER 1

*Figure 1.4: Step count table for matrix addition (p.27) CHAPTER 1

Asymptotic Notation(O, , ) Exact step count Compare the time complexity of two programs that computing the same function Difficult task of most of programs Asymptotic notation Big “oh” upper bound(current trend) Omega lower bound Theta upper and lower bound CHAPTER 1

n=O(n2)=O(n2.5)= O(n3)= O(2n) Asymptotic Notation O Definition f(n)= O(g(n)) iff there exist positive constants c and n0 such that f(n)<= cg(n) for all n, n>= n0 Examples 3n+ 2= O(n) as 3n+ 2<= 4n for all n>= 2 10n2+ 4n+ 2= O(n2) as 10n2+ 4n+ 2<= 11n2 for n>= 5 3n+2<> O(1), 10n2+ 4n+ 2<> O(n) Remarks g(n) is upper bound, the least? (估algorithm, 作答時…) n=O(n2)=O(n2.5)= O(n3)= O(2n) O(1): constant, O(n): linear, O(n2): quadratic, O(n3): cubic, and O(2n): exponential (各舉一例) CHAPTER 1

Asymptotic Notation  Definition f(n)= (g(n)) iff there exist positive constants c and n0 such that f(n)>= cg(n) for all n, n>= n0 Examples 3n+ 2= (n) as 3n+ 2>= 3n for n>= 1 10n2+ 4n+ 2= (n2) as 10n2+4n+ 2>= n2 for n>= 1 6*2n+ n2= (2n) as 6*2n+ n2 >= 2n for n>= 1 Remarks lower bound, the largest ? (used for problem) 3n+3= (1), 10n2+4n+2= (n); 6*2n+ n2= (n100) Theorem If f(n)= amnm+ ...+ a1n+ a0 and am> 0, then f(n)= (nm) CHAPTER 1

Asymptotic Notation  Definition Examples Remarks Theorem f(n)= (g(n)) iff there exist positive constants c1, c2, and n0 such that c1g(n)<= f(n) <= c2g(n) for all n, n>= n0 Examples 3n+2=(n) as 3n+2>=3n for n>1 and 3n+2<=4n for all n>= 2 10n2+ 4n+ 2=  (n2); 6*2n+n2= (2n) Remarks Both an upper and lower bound 3n+2!=(1); 10n2+4n+ 2!= (n) Theorem If f(n)= amnm+ ... +a1n+ a0 and am> 0, then f(n)= (nm) CHAPTER 1

Example of Time Complexity Analysis Statement Asymptotic complexity void add(int a[][Max.......) 0 { 0 int i, j; 0 for(i= 0; i< rows; i++) (rows) for(j=0; j< cols; j++) (rows*cols) c[i][j]= a[i][j]+ b[i][j]; (rows*cols) } 0 Total (rows*cols) CHAPTER 1

Example of Time Complexity Analysis(Cont.) int binsearch(int list[], int left, int right) { int middle; while (left<= right){ middle= (left+ right)/2; switch(compare(list[middle], searchnum)){ case -1: left= middle+ 1; break; case 0: return middle; case 1: right= middle- 1; } return -1; worst case (log n) best case (1) CHAPTER 1

*Figure 1.9:Times on a 1 billion instruction per second computer(p.40) CHAPTER 1

*Figure 1.8:Plot of function values(p.39) nlogn n logn CHAPTER 1

Performance Measurement (machine dependent) 注意: 一般常以 average case 和 worst case 來討論 (真的要怎麼作?) Estimate average case : 用隨機的測試資料,取結果的平均時間 Estimate worst case : 用隨機的測試資料,取結果的最大時間 There are actually two different methods for timing events in C. Figure 1.10 shows the major differences between these two methods. Method 1 uses clock to time events. This function gives the amount of processor time that has elapsed since the program began running. Method 2 uses time to time events. This function returns the time, measured in seconds, as the built-in type time_t. The exact syntax of the timing functions varies from computer to computer and also depends on the operating system and compiler in use. Method 1 Method 2 Start timing start=clock(); start=time(NULL); Stop timing stop=clock(); stop=time(NULL); Type returned clock_t time_t Result in seconds duration=((double)(stop-start)/CLK_TCK; duration=(double)difftime(stop, start); Figure 1.10 CHAPTER 1 CLOCKS_PER_SEC