Some features of NV. Vincent Loriette.

Slides:



Advertisements
Similar presentations
Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Advertisements

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
FINESSE FINESSE Frequency Domain Interferometer Simulation Versatile simulation software for user-defined interferometer topologies. Fast, easy to use.
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Hiro Yamamoto LLO April 3, 2014 LIGO-G Core Optics related loss hierarchy of aLIGO Hiro Yamamoto LIGO/Caltech Introduction Loss related to geometry.
Cascina, January 25th, Coupling of the IMC length noise into the recombined ITF output Raffaele Flaminio EGO and CNRS/IN2P3 Summary - Recombined.
LIGO Laboratory1 Thermal Compensation Experience in LIGO Phil Willems- Caltech Virgo/LSC Meeting, Cascina, May 2007 LIGO-G Z.
Optics of GW detectors Jo van den Brand
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
1 Virgo commissioning status M.Barsuglia LAL Orsay.
Optical simulation – March 04 1 Optical Simulation François BONDU VIRGO Tools Goals Example: tuning of modulation frequency A few questions.
Higher order TEM modes: Why and How? Andreas Freise European Gravitational Observatory 17. March 2004.
Higher order laser modes in gravitational wave detectors
1 Gravitational wave interferometer OPTICS François BONDU CNRS UMR 6162 ARTEMIS, Observatoire de la Côte d’Azur, Nice, France EGO, Cascina, Italy May 2006.
G R DC Readout for Advanced LIGO P Fritschel LSC meeting Hannover, 21 August 2003.
RF readout scheme to overcome the SQL Feb. 16 th, 2004 Aspen Meeting Kentaro Somiya LIGO-G Z.
Stefan Hild October 2007 LSC-Virgo meeting Hannover Interferometers with detuned arm cavaties.
1 The Status of Melody: An Interferometer Simulation Program Amber Bullington Stanford University Optics Working Group March 17, 2004 G D.
Finesse Update + Noise Propagation-Simulation Tutorial AEI, Hannover Andreas Freise University of Birmingham.
GEO‘s experience with Signal Recycling Harald Lück Perugia,
1 Noise sources at high frequency in Virgo E. Tournefier (LAPP-CNRS) ILAS WG1 meeting, Hannover December 12 th,2005 Recycled ITF sensitivities Noise sources.
Wireless Communication Technologies 1 Phase noise A practical oscillator does not produce a carrier at exactly one frequency, but rather a carrier that.
LIGO- G R Telecon on June, Mach-Zender interferometer to eliminate sidebands of sidebands for Advanced LIGO Osamu Miyakawa, Caltech.
Modulators & SHG (a) Longitudinal field; (b) Transverse field; (c) Travelling-wave field.
LSC-VIRGO joint meeting - Pisa1 Input mirrors thermal lensing effect Frequency modulation PRCL length in Virgo Some results from a Finesse simulation.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Sensitive gas absorption coefficient measurements based on Q reduction in an optical cavity. 1) Pulsed laser ring-down time measurements 2) Chopped CW.
1 1.Definition 2.Deliverables 3.Status of preliminary design 4.Risks 5.Tasks to be done 6.Decisions to be taken 7.Required simulations 8.Planning ISC workshop:
Nov 3, 2008 Detection System for AdV 1/8 Detection (DET) Subsystem for AdV  Main tasks and requirements for the subsystem  DC readout  Design for: the.
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
Hiro Yamamoto GWADW Girdwood, Alaska LIGO-G Beam Splitter in aLIGO Hiro Yamamoto LIGO/Caltech BS02 to BS05? larger BS? BS in aLIGO IFO for.
First DR FFT Results on Advanced LIGO Using Perfect and Imperfect Optics By Ken Ganezer, George Jennings, and Sam Wiley CSUDH LIGO-G Z by Ken.
LSC-Virgo Caltech on March 20, 2008 G E1 AdvLIGO Static Interferometer Simulation AdvLIGO simulation tools  Stationary, frequency domain.
1 Virgo Commissioning Status WG1 meeting Potsdam, 21 st July 2006.
LIGO Laboratory1 Thermal Compensation in LIGO Phil Willems- Caltech Baton Rouge LSC Meeting, March 2007 LIGO-G Z.
Institute for Cosmic Ray Research Univ. of Tokyo Development of an RSE Interferometer Using the Third Harmonic Demodulation LIGO-G Z Osamu Miyakawa,
Aligning Advanced Detectors L. Barsotti, M. Evans, P. Fritschel LIGO/MIT Understanding Detector Performance and Ground-Based Detector Designs LIGO-G
1 Locking in Virgo Matteo Barsuglia ILIAS, Cascina, July 7 th 2004.
CITF A. Allocca, M. Mantovani. Outline CITF schematic Resonance conditions Effect of the misalignment on the error signals Comparison with Virgo+ Effect.
Caltech, February 12th1 Virgo central interferometer: commissioning and engineering runs Matteo Barsuglia Laboratoire de l’Accelerateur Lineaire, Orsay.
1 DC readout for Virgo+? E. Tournefier WG1 meeting, Hannover January 23 rd,2007 DC vs AC readout: technical noises Output mode cleaner for DC readout.
ILIAS - Geneve1 Input mirrors thermal lensing effect in Virgo J. Marque.
The VIRGO detection system
FINESSE FINESSE Frequency Domain Interferometer Simulation Andreas Freise European Gravitational Observatory 17. March 2004.
LIGO-G D Advanced LIGO Systems & Interferometer Sensing & Control (ISC) Peter Fritschel, LIGO MIT PAC 12 Meeting, 27 June 2002.
M. Varvella - Virgo LALCascina, March 15-19, 2004 STATUS of SIGNAL RECYCLING SIMULATION at Virgo LAL Signal Recycling Code strategy Optical configurations.
White light Cavities University of Florida LIGO-G Z Stacy Wise, Guido Mueller, David Reitze, D.B. Tanner, California Institute of Technology April.
H1 Squeezing Experiment: the path to an Advanced Squeezer
Interferometer configurations for Gravitational Wave Detectors
Daniel Sigg, Commissioning Meeting, 11/11/16
Nergis Mavalvala Aspen January 2005
Summary of IFO Spatial Mode Workshop
Output Mode Cleaners: Introduction for non-experts
Homodyne readout of an interferometer with Signal Recycling
Commissioning the LIGO detectors
Heterodyne Readout for Advanced LIGO
Quantum effects in Gravitational-wave Interferometers
Gravitational wave interferometer OPTICS
Homodyne or heterodyne Readout for Advanced LIGO?
Workshop on Gravitational Wave Detectors, IEEE, Rome, October 21, 2004
Heterodyne Readout for Advanced LIGO
Modeling of Advanced LIGO with Melody
Advanced Virgo Finesse Input File
Thermal lensing effect: Experimental measurements - Simulation with DarkF & Finesse J. Marque (Measurements analysis: M. Punturo; DarkF simulation: M.
“Traditional” treatment of quantum noise
LIGO Scientific Collaboration
Alignment Investigations towards Advanced Virgo
Homodyne detection: understanding the laser noise amplitude transfer function Jérôme Degallaix Ilias meeting – June 2007.
Presentation transcript:

Some features of NV. Vincent Loriette

NV main objectives Evaluate the effect of imperfections on the shot-noise limited sensitivity. Fix some tolerances. Find free parameters optimal values (modulation depth, démodulation phase, etc.)

NV main features All optical parameters can be varied. Free mirror shapes. Free orientation and shape of the incident beam. Free modulation amplitude and frequency. … Fields are represented as finite sums of HG functions (no FFT). Fast code. No diffraction in free space. Not suited to work with exotic beam shapes. Optimization steps use realistic error signals. Realistic resonnance and antiresonnance seeks. Not necessarilly optimal (in the math sense).

Computation example : north arm refectance ORFP_n=ORni_o+OTni_i*inv(OId-exp(-i*phi_n)*OFPn)*(OPna*ORne_i*OPna*exp(-i*phi_n))*OTni_o; Edges diffraction Mode réfléchi Airy peak,… Mode incident Roughness indiced mode coupling

Effects of heating North arm reflectance without… and with thermal effects (stable)

Various optimizations can be performed NV main window Various optimizations can be performed Each optical parameter can be associated with an experimental measurement datafile

Result window : north arm example

Result windows : beam example

Output beam shape (before OMC)

Sensitivity & modulation

Typical results Scalar defects Maps Maps+thermal Opt mod index 0.068 0.172±0.001 0.215 ±0.001 Opt demod phase 2 ±0 17 ±1 Finesse N 49.26 49.1 ±0.2 49.3 ±0.2 Finesse W 49.79 49.6 ±0.2 49.7 ±0.2 dF/F [%] 0.27 0.23 ±0.12 0.24 ±0.12 Asymmetry [%] 1.05 1.00 ±0.3 2.78 ±0.5 Stored power N [kW] 15.38 10.82 ±0 11.15 ±0 Lost power N [W] 0.23 4.11 ±1 3.70 ±1 Surtension N 31.37 31.18 ±0.02 31.15 ±0.02 Stored power W [kW] 15.55 10.91 ±0 11.27 ±0.3 Lost power W [W] 0.19 6.05 ±0.02 5.85 ±0.04 Surtension W 31.70 31.42 ±0.01 31.48 ±0.1 Carrier power on BS [W] 978.5 684.5 ±0.5 725.1 ±2 Sideband power on BS [W] 1.70 8.56 ±0.1 10.9 ±0.2 Reflected carrier [W] 17.84 8.42 ±0.01 9.82 ±0.08 Reflected sb [W] 0.027 0.24 ±0 0.26 ±0.01 CITF surtension Carrier 49.04 34.74 ±0.03 37.10 ±0.08 CITF surtension SB 36.49 29.01 ±0.02 24.0 ±0.1 Transmitted (detected) carrier [mW] 0.064 (0.064) 359 ±6 (1.6 ±0) 324 ±40 (3.5 ±0.1) Transmitted (detected) sb [mW] 18.7 (17.9) 93.0 ±0.8 (70.0 ±1) 125 ±2 (100 ±2) Sensitivity [*1E-23] 2.48 2.87 ±0.01 2.96 ±0.02