Timing and Event System S. Allison, M. Browne, B. Dalesio, J

Slides:



Advertisements
Similar presentations
XFEL C+C HARDWARE : REQUIREMENTS 1) To receive, process and store Timing Signals from TR ( Timing Receiver ) in same crate : - 5 MHz Bunch CLOCK - Bunch.
Advertisements

XFEL 2D Pixel Clock and Control System Train Builder Meeting, DESY 18 February 2010 Martin Postranecky, Matt Warren, Matthew Wing.
XFEL 2D Pixel Clock and Control System Train Builder Meeting, DESY 22 October 2009 Martin Postranecky, Matt Warren, Matthew Wing.
01/11/2002SNS Software Final Design Review1 V123S Event Link Encoder, Transmission System and PLL Receiver Thomas M. Kerner (BNL) SNS Global Controls.
Stephanie Allison LCLS Event System 14 June LCLS Event System Outline HW Block Diagram Timing Requirements Time Lines EVG.
Dayle Kotturi and Stephanie Allison Facility Advisory Committee Meeting April 20-21,
Stephanie Allison/John Dusatko EPICS Collaboration Meeting May 1, Timing and Event System for the LCLS Electron Accelerator*
Stephanie Allison Integration with the SLC Control April 7, 2005 Introduction PNET Receiver VME Module SLC-Aware IOC Existing.
Stephanie Allison Facility Advisory Committee Meeting Apr 16, 2007 Timing and Event System S. Allison, M. Browne, B. Dalesio, J.
Stephanie Allison LCLS Integration with SLC October 12, 2004 Integration with SLC LCLS Facility Advisory Committee Oct 12, 2004 Introduction.
Stephanie Allison Integration with the SLC Control Oct 27, Introduction Demo SLC-Aware IOC Plans for Next 12 Months.
Dayle Kotturi Facility Advisory Committee Meeting October 12, 2004 Injector/Linac Controls An overview of the status of each of.
Dayle Kotturi SLC April 29, 2004 Outline Motivation Key Components Status Update SLC / EPICS Timing Software Tasks Hardware.
The TIMING System … …as used in the PS accelerators.
ATF2 Q-BPM System 19 Dec Fifth ATF2 Project Meeting J. May, D. McCormick, T. Smith (SLAC) S. Boogert (RH) B. Meller (Cornell) Y. Honda (KEK)
EPICS 2011 Spring Collaboration Meeting, Hsinchu, June 13-17, 2011 TPS Timing System & Plan of Machine Protection System TPS Timing System & Plan of Machine.
INTRODUCE OF SINAP TIMING SYSTEM
Overview of SINAP Timing System Electronics Group Beam Diagnostics & Control Division SINAP.
LCLS Timing Software and Plan 1 Controls Timing Workshop EPICS Collaboration Meeting SLAC LCLS Timing Software and Plan April Kukhee Kim.
John Dusatko 2012 EPICS Timing Workshop The SLAC Timing System April 24, The Accelerator Timing System at SLAC: Experiences, Ideas & Future Plans.
Micro-Research Finland Oy Timing System Developments Jukka Pietarinen EPICS Collaboration Meeting Shanghai March 2008.
SPIE, PA-IVKrzysztof Czuba1 Improved fiber-optic link for the phase reference distribution system for the TESLA technology based projects Krzysztof.
Micro-Research Finland Oy Timing System Modules Jukka Pietarinen EPICS Collaboration Meeting, Argonne, June 2006.
Micro-Research Finland Oy MRF Timing System Jukka Pietarinen Timing Workshop CERN February 2008.
Dayle Kotturi Lehman Review May 10-12, 2005 LCLS Timing Outline Scope SLC Master Pattern Generator Introducing the PNET VME receiver.
EPICS Collaboration Meeting Fall PAL October 22 ~ 26, 2012 LCLS-I/LCLS-II Timing System Low Level Kukhee Kim for LCLS Timing Team ICD Software,
1 Timo Korhonen PSI 1. Concepts revisited…again 3. New (Diamond) cards features and status 4. EPICS interface 5. Conclusions SLS & Diamond Timing System.
SNS Integrated Control System Timing Clients at SNS DH Thompson Epics Spring 2003.
EPICS Collaboration Meeting Fall PAL October 22 ~ 26, 2012 LCLS Timing System (pattern design, evGUI, and high level) Mike Zelazny for LCLS Timing.
EPICS Collaboration Meeting Timing Workshop April 24, 2012.
Outline Introduction to LCLS Some background on SLAC Timing
FPGA firmware of DC5 FEE. Outline List of issue Data loss issue Command error issue (DCM to FEM) Command lost issue (PC with USB connection to GANDALF)
Stephanie Allison LCLS Controls Software Meeting Dec 6, 2007 How To Set Up for the Event System on an IOC with an EVR(s) Assumes.
Dayle Kotturi System Concept Review/Preliminary Design Review November 16, 2005 Timing Outline System Concept Review Requirements.
IMAC 2007BEPCII Timing System Status1 Event timing system for BEPCII storage ring commissioning Presented by G. Lei May 2007.
Stephanie Allison SLC-Aware April 5, 2005 Introduction Description Issues Progress Plans for 2005 SLC-Aware IOC LCLS Collaboration,
Stephen Norum LCLS Oct. 12, LCLS Machine Protection System Outline Overview of interim MPS Update on the interim MPS.
BEPC II TIMING SYSTEM EPICS Seminar Presented by Ma zhenhan IHEP 20.August 2002.
Debbie Rogind Diane Fairley SLC-Aware BSAC Facility Requirements Review May 26, 2005 SLC Aware IOC BSAC* Facility Requirements Review *Beam Synchronous.
John Dusatko USPAS Fundamentals of Timing & Synchronization January 25, 2008 / Santa Rosa, CA 1 The LCLS Timing & Event System -
Stephanie Allison LCLS IOC Meeting Jul 18, 2008, Jan 21, 2011 Beam Synchronous Acquisition for IOC Engineers Definition/Requirements.
ESS Timing System Plans Timo Korhonen Chief Engineer, Integrated Control System Division Nov.27, 2014.
LCLS_II High Rep Rate Operation and Femtosecond Timing
SLAC I&C Division / EE Department
Outline Introduction to LCLS Some background on SLAC Timing
Beam-Synchronous Data Acquisition (BS-DAQ)
SLC-Aware IOC LCLS Collaboration Jan 26, 2005
Introduction Functional Requirements (Stephanie) SLC Executive (Diane)
LCLS Timing Software and Plan
Status of the Beam Phase and Intensity Monitor for LHCb
BCTW calibration status and future
Timing and Event System S. Allison, M. Browne, B. Dalesio, J
Event Displays for EVR IOCs
LCLS Timing Outline Scope The order of things
Fill-pattern Control System for KEKB
LCLS Event System - Software
Trigger system Marián Krivda (University of Birmingham)
Low Level RF Status Outline LLRF controls system overview
EPICS Collaboration Meeting
Timing and Event System for the LCLS Electron Accelerator
FPGA Based Trigger System for the Klystron Department
LCLS Timing Outline Scope The order of things
Low Level RF Status Outline LLRF controls system overview
SLS & Diamond Timing System update
Beam Synchronous Acquisition on IOC
EVG-to-EVR Data Transfer (Dayle Kotturi)
Low Level RF Status Outline Overview showing hardware instances
Breakout Session: Controls
LCLS Machine Protection System
Timing and Event System Status DOE Review of the LCLS Project SC5 - Controls Systems Breakout Session S. Allison, M. Browne, B. Dalesio, J. Dusatko,
Presentation transcript:

Timing and Event System S. Allison, M. Browne, B. Dalesio, J Timing and Event System S. Allison, M. Browne, B. Dalesio, J. Dusatko, R. Fuller, A. Gromme, D. Kotturi, P. Krejcik, S. Norum, D. Rogind, H. Shoaee, M. Zelazny

Outline Overview – HW and Reqts Hardware Test Stand Long-Haul Fiber Issues and Plans Outstanding Software Issues and Tasks Wish List

Hardware Block Diagram 2007 Commissioning Modulator Triggers Existing Control System Beam Path Acq and Calibration Triggers BPM FEE PADs and PACs Timing Crate Acc and Standby Triggers E V G F A N 1 F A N 2 P N E T I O C E V R I O C E V R 1 E V R 2 E V R 3 I O C 360Hz Fiducial RF Timing BPM Crates LLRF Crate 119MHz Clock Future MPS Beam Rate, Beam Path Fiber Distribution: Timing Pattern, Timestamp, Event Codes TORO FEE Triggers Triggers Trigger F A N 3 E V R 1 C A M 1 I O C 1 ... E V R 8 C A M 8 I O C 8 E V R 1 C A M 1 C A M 2 I O C 1 … E V R 4 C A M 7 C A M 8 I O C 4 Laser Steering Crate F A N 4 E V R I O C Profile Monitor Crate Toro Farc Crate … …

Event Generator (EVG-200) SLAC PNET Receiver Micro-Research Finland Oy Receives the MPG broadcast sent to SLC micros and passes it to the EVG SFP transceiver Optical signal to EVRs (fan-outs) RF input Event clock divided from RF /1*,/4, ... /12 EVR Fan Out module Line syncronisation input 360 Hz *SLAC addition

Event Receiver – PMC version Event Receiver (EVR-200-RF) Micro-Research Finland Oy Programmable outputs 5(3) TTL level 2 LVPECL level External trigger input SFP transceiver Optical signal from EVG (or fan-out) Recovered RF output Event Receiver – PMC version Event Receiver (EVR-200-RF)

Modifications to EVG 119MHz clock input EVG AC-line input In the absence of a ÷1 input, a daughterboard was made containing a clock receiver IC to allow us to input 119MHz directly EVG AC-line input 360Hz fiducial input was rerouted with firmware change to avoid addition of jitter from internal 10 kHz clock and phase shifter

Tallies for 2007, Plans for Next Phase # EVRs = 31 installed (mostly PMC) Add 60 more EVRs - 34 VME, 26 PMC # IOCs with EVRs = 28 Add 40 more IOCs with EVRs # EVR Fanouts = 4 Add 5 more fanouts (1 every 200m) # Hardware Triggers = 120+ All TTL except 2 NIM triggers for QDCs Most require short cables (except LLRF) Add ? more

Timing Requirements 360 Hz 119 MHz 20 ps 8.4 ns ± 20 ps >1 sec Maximum trigger rate 360 Hz Clock frequency 119 MHz Clock precision 20 ps Coarse step size 8.4 ns ± 20 ps Delay range >1 sec Fine step size Max timing jitter w.r.t. clock 2 ps rms Differential error, location to location 8 ns Long term stability

Event System Requirements Event Generator IOC: Send out proper event codes at 360Hz based on: PNET pattern input (beam code and bits that define beam path and other conditions) Add LCLS conditions such as BPM calibration on off-beam pulses , diagnostic pulse etc. Future – event codes also based on new MPS and user input Send out system timestamp with encoded pulse ID from PNET Send out PNET pattern to be used by SLC-aware IOCs Manage user-defined beam-synchronous acquisition measurement definitions (event definition or EDEF) Check for match between user EDEFs and input PNET pattern at 360Hz and tag matches in outgoing pattern

Event System Requirements, cont Event Receiver IOC: Set trigger delays, pulse widths, and enable/disable via user requests (not yet done on a pulse-by-pulse basis) Set event code per trigger (triggering done in HW when event code received) Receive event pattern 8.3 msec before corresponding pulse Perform beam-synchronous acquisition based on tags set by EVG in the event pattern Perform beam-synchronous acquisition for the SLC- aware IOC based on the PNET part of the event pattern Process pre-defined records when specific event codes are received (not yet available – bug!)

EVG Event Time Line – 4 Fiducials 360Hz Fiducial F0 (n=0) F1 (n=1) F2 (n=2) F3 (n=3) Time (msec) 1.0 2.8 5.6 8.3 9.3 HW starts sending event codes, starting with fiducial event code R0 R1 R2 R3 Receive Fn+3 PNET, determine Fn+3 LCLS pattern, and advance pipeline (n-2->n-1->n) P0 P1 P2 P3 L0 L1 L2 L3 Send LCLS pattern Set Event Codes in Other RAM based on the last patterns for Fn+1 E1 E2 E3 E4 120Hz BEAM B-3 B0

Trigger Event Time Line – 1 Beam Pulse (B0) Record processing (event, interrupt) Hardware Triggers Receive pattern for 3 pulses ahead Triggering Event Codes Start Beam Kly Standby Event Timestamp, pattern records, and BSA ready Acq Trigger Kly Accel Fiducial Event Received Fiducial F3 B0 18 500 1023 Time (usec) 0.3 100

Trigger Control Display

EVG Displays

Hardware Test Stand EVR Output (Trigger Signal) Delay between fid to trigger: Minimum intrinsic system delay + adjustable value EVG Input (360Hz fiducial)

Timing Jitter Test Results Agilent 54845A EVR jitter w.r.t. fiducial PDU jitter w.r.t. fiducial 30 min. 13 ps rms jitter 13 ps rms jitter

Event System HW: Long-Haul Dist. For the next phase, the biggest challenge is Long- Haul distribution of timing data via the Fiber-Optical (F-O) Links Why? MRF Event System is designed around Multi-Mode SFP (Small Form-Factor Pluggable) F-O links which allow a maximum fiber length of ~300 meters Our requirements include runs of several Kilometers (at least) Cannot daisy-chain the event F-O links: exceeds the jitter budget Temperature effects on long fibers – drift, but how bad?

Event System HW: Long-Haul Dist. Proposed Solution: New HW and some testing Single-Mode, pin-compatible SFP modules are commercially available (Agilent ACFT-57R5) All us to go ~10KM Should plug right into our event system HW Still does not solve temperature-induced phase-drift problem Propose to solve by either/and: Running Long Fiber in temperature-controlled environment Re-Syncing EVRs to a locally-distributed 119MHz source Long-haul fiber test: Function of Single-Mode SFP Modules Drift, Trigger time jitter, Phase Noise

Event System – Long-Haul Fiber System Test

Issues and Tasks Outstanding problem (presumably software) where CPU hangs when EVR interrupts are enabled. Some IOCs running without interrupts (hardware triggers but without timestamps, BSA, or event code IRQs). Outstanding bug with IRQ processing on VME EVRs Software not yet in place to handle hardware and communication errors. Changing an event code for a specific trigger requires a change in the delay to trigger at the same time – need database to automate the change Need generic timing delay scan software that works for most device types Need to get status of RF clock into the system (external interface) Ability to change trigger attributes on a pulse-by-pulse basis using simple conditional expressions

Wish List When 2 event codes trigger a device on the same pulse, the second event restarts the delay. Wish the second event would be ignored instead. Interrupt from the EVG on fiducial trigger (AC line trigger)