Volume 110, Issue 2, Pages (January 2016)

Slides:



Advertisements
Similar presentations
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Advertisements

Volume 102, Issue 12, Pages (June 2012)
Volume 98, Issue 2, Pages (January 2010)
Volume 108, Issue 5, Pages (March 2015)
Peter J. Mulligan, Yi-Ju Chen, Rob Phillips, Andrew J. Spakowitz 
Volume 105, Issue 2, Pages (July 2013)
SAXS versus FRET: A Matter of Heterogeneity?
Volume 110, Issue 2, Pages (January 2016)
Volume 107, Issue 2, Pages (July 2014)
Relation between the Conformational Heterogeneity and Reaction Cycle of Ras: Molecular Simulation of Ras  Chigusa Kobayashi, Shinji Saito  Biophysical.
David C. Latshaw, Carol K. Hall  Biophysical Journal 
Volume 104, Issue 1, Pages (January 2013)
Austin Huang, Collin M. Stultz  Biophysical Journal 
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Volume 111, Issue 2, Pages (July 2016)
Volume 100, Issue 8, Pages (April 2011)
Jia Xu, Yingying Lee, Lesa J. Beamer, Steven R. Van Doren 
Large-Scale Conformational Dynamics of the HIV-1 Integrase Core Domain and Its Catalytic Loop Mutants  Matthew C. Lee, Jinxia Deng, James M. Briggs, Yong.
Effects of Hofmeister Ions on the α-Helical Structure of Proteins
Monika Sharma, Alexander V. Predeus, Nicholas Kovacs, Michael Feig 
Volume 112, Issue 2, Pages (January 2017)
Volume 102, Issue 3, Pages (February 2012)
Volume 114, Issue 1, Pages (January 2018)
Volume 96, Issue 2, Pages (January 2009)
Ion Specificity and Nonmonotonic Protein Solubility from Salt Entropy
Volume 107, Issue 6, Pages (September 2014)
Qiaochu Li, Stephen J. King, Ajay Gopinathan, Jing Xu 
Christian Kappel, Ulrich Zachariae, Nicole Dölker, Helmut Grubmüller 
Heleen Meuzelaar, Jocelyne Vreede, Sander Woutersen 
Volume 110, Issue 11, Pages (June 2016)
Volume 99, Issue 8, Pages (October 2010)
Volume 109, Issue 5, Pages (September 2015)
Volume 93, Issue 2, Pages (July 2007)
Taeyoon Kim, Margaret L. Gardel, Ed Munro  Biophysical Journal 
Tzur Paldi, Michael Gurevitz  Biophysical Journal 
Let’s Twist (the S4) Again
Janin Glaenzer, Martin F. Peter, Gavin H. Thomas, Gregor Hagelueken 
Volume 103, Issue 2, Pages (July 2012)
Real-Time Nanopore-Based Recognition of Protein Translocation Success
Volume 109, Issue 6, Pages (September 2015)
Protein Collective Motions Coupled to Ligand Migration in Myoglobin
Volume 95, Issue 9, Pages (November 2008)
Cyclic N-Terminal Loop of Amylin Forms Non Amyloid Fibers
Phosphorylation Primes Vinculin for Activation
Volume 106, Issue 4, Pages (February 2014)
Structural Flexibility of CaV1. 2 and CaV2
Tsuyoshi Terakawa, Shoji Takada  Biophysical Journal 
Andrés Córdoba, Daniel M. Hinckley, Joshua Lequieu, Juan J. de Pablo 
A Flexible Approach to the Calculation of Resonance Energy Transfer Efficiency between Multiple Donors and Acceptors in Complex Geometries  Ben Corry,
Volume 109, Issue 2, Pages (July 2015)
Robust Driving Forces for Transmembrane Helix Packing
Effect of Grafting on Aggregation of Intrinsically Disordered Proteins
Feng Ding, Sergey V. Buldyrev, Nikolay V. Dokholyan 
Volume 104, Issue 2, Pages (January 2013)
Pawel Gniewek, Andrzej Kolinski  Biophysical Journal 
Volume 113, Issue 12, Pages (December 2017)
Volume 14, Issue 2, Pages (February 2006)
Modelling Toehold-Mediated RNA Strand Displacement
Volume 95, Issue 7, Pages (October 2008)
Volume 109, Issue 7, Pages (October 2015)
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Shayantani Mukherjee, Sean M. Law, Michael Feig  Biophysical Journal 
Christian Kappel, Ulrich Zachariae, Nicole Dölker, Helmut Grubmüller 
Interactions of the Auxilin-1 PTEN-like Domain with Model Membranes Result in Nanoclustering of Phosphatidyl Inositol Phosphates  Antreas C. Kalli, Gareth.
Volume 109, Issue 10, Pages (November 2015)
Zackary N. Scholl, Weitao Yang, Piotr E. Marszalek  Biophysical Journal 
Seongwon Kim, Takako Takeda, Dmitri K. Klimov  Biophysical Journal 
Volume 114, Issue 4, Pages (February 2018)
Volume 98, Issue 3, Pages (February 2010)
Alexander S. Moffett, Kyle W. Bender, Steven C. Huber, Diwakar Shukla 
Presentation transcript:

Volume 110, Issue 2, Pages 362-371 (January 2016) Phosphorylation Increases Persistence Length and End-to-End Distance of a Segment of Tau Protein  Alexander F. Chin, Dmitri Toptygin, W. Austin Elam, Travis P. Schrank, Vincent J. Hilser  Biophysical Journal  Volume 110, Issue 2, Pages 362-371 (January 2016) DOI: 10.1016/j.bpj.2015.12.013 Copyright © 2016 Biophysical Society Terms and Conditions

Figure 1 Solvent-free, hard-sphere collision simulation of a polyalanine 60 mer under increasing polyproline II sampling bias. Probability density scale indicates density at a given PII sampling bias. To see this figure in color, go online. Biophysical Journal 2016 110, 362-371DOI: (10.1016/j.bpj.2015.12.013) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 2 Sequence and conformational properties of the human microtubule-associated protein tau. (A) Schematic representation of the peptide used in these studies showing the phosphorylatable positions (dotted boxes) as well as locations of the fluorescence donor and acceptor. (B) Disorder propensity prediction from a variety of disorder predictors. Values >0.5 indicate disorder. (C) Polyproline II propensity prediction from Elam et al. (11). Shaded areas in (B) and (C) indicate the disordered and high PII region from which the model peptides were derived, which is a subregion of the proline-rich domain P1. To see this figure in color, go online. Biophysical Journal 2016 110, 362-371DOI: (10.1016/j.bpj.2015.12.013) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 3 Circular dichroism of model peptide derivatives shows increases in polyproline II propensity upon phosphorylation. Normalized mean residue ellipticity is proportional to the ellipticity maximum in the range 226–230 nm. (A) Change in normalized mean residue ellipticity upon phosphorylation. Blue, threonine-containing peptides; red, serine-containing peptides. (B) Temperature melt of normalized mean residue ellipticity. Blue, threonine-containing peptides; red, serine-containing peptides; circles, unphosphorylated; triangles, phosphorylated. To see this figure in color, go online. Biophysical Journal 2016 110, 362-371DOI: (10.1016/j.bpj.2015.12.013) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 4 Phosphorylation extends and stiffens the test peptide at 0 M NaCl as measured by FRET. (A) Distance distributions of the semiflexible chain model, for threonine-containing peptides. Broken line, unphosphorylated; solid line, phosphorylated. (B) Distance distributions of the semiflexible chain model, for serine-containing peptides. Broken line, unphosphorylated; solid line, phosphorylated. (C) Model peptide mean end-to-end distances. Error bars represent 95% confidence intervals. Mean change: pThr = +2.24 Å; pSer = +1.83 Å. (D) Experimentally fit model peptide persistence lengths. Error bars represent 95% confidence intervals. Mean change: pThr = +2.86 Å; pSer = +2.22 Å. To see this figure in color, go online. Biophysical Journal 2016 110, 362-371DOI: (10.1016/j.bpj.2015.12.013) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 5 Solvent-free hard-sphere collision simulations of the peptide CAKXPPAPKXPPAW, under increasing polyproline II sampling bias of the backbone dihedral angles of residue X: blue, threonine-containing peptides; red, serine-containing peptides; triangles, unphosphorylated peptides; circles, phosphorylated peptides. To see this figure in color, go online. Biophysical Journal 2016 110, 362-371DOI: (10.1016/j.bpj.2015.12.013) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 6 Calculated ratio of the relative force of electrostatic interactions between two phosphate groups, screened by salt, compared between 0 and 1 M NaCl. Biophysical Journal 2016 110, 362-371DOI: (10.1016/j.bpj.2015.12.013) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 7 Phosphorylation extends and stiffens the test peptide at 1 M NaCl as measured by FRET. (A) Distance distributions of the semiflexible chain model, for threonine-containing peptides. Broken line, unphosphorylated; solid line, phosphorylated. (B) Distance distributions of the semiflexible chain model, for serine-containing peptides. Broken line, unphosphorylated; solid line, phosphorylated. (C) Model peptide mean end-to-end distances. Error bars represent 95% confidence intervals. Mean change: pThr = +2.47 Å; pSer = +1.80 Å. (D) Experimentally fit model peptide persistence lengths. Error bars represent 95% confidence intervals. Mean change: pThr = +2.85 Å; pSer = +2.03 Å. To see this figure in color, go online. Biophysical Journal 2016 110, 362-371DOI: (10.1016/j.bpj.2015.12.013) Copyright © 2016 Biophysical Society Terms and Conditions