Volume 76, Issue 1, Pages (January 1999)

Slides:



Advertisements
Similar presentations
Calibration of Optical Tweezers for In Vivo Force Measurements: How do Different Approaches Compare? Yonggun Jun, Suvranta K. Tripathy, Babu R.J. Narayanareddy,
Advertisements

Actin Protofilament Orientation at the Erythrocyte Membrane
Maria A. Kiskowski, Anne K. Kenworthy  Biophysical Journal 
Temperature Control Methods in a Laser Tweezers System
Force-Clamp Analysis Techniques Give Highest Rank to Stretched Exponential Unfolding Kinetics in Ubiquitin  Herbert Lannon, Eric Vanden-Eijnden, J. Brujic 
Precision and Variability in Bacterial Temperature Sensing
Precipitation of DNA by Polyamines: A Polyelectrolyte Behavior
Volume 109, Issue 2, Pages (July 2015)
Stretching Single-Stranded DNA: Interplay of Electrostatic, Base-Pairing, and Base-Pair Stacking Interactions  Yang Zhang, Haijun Zhou, Zhong-Can Ou-Yang 
Behavior of Supercoiled DNA
Dynamics of Active Semiflexible Polymers
Volume 111, Issue 8, Pages (October 2016)
Volume 107, Issue 2, Pages (July 2014)
Charlie Gosse, Vincent Croquette  Biophysical Journal 
Dynamics of Membrane Nanotubulation and DNA Self-Assembly
Determination of the Hydrocarbon Core Structure of Fluid Dioleoylphosphocholine (DOPC) Bilayers by X-Ray Diffraction Using Specific Bromination of the.
Volume 104, Issue 1, Pages (January 2013)
Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei
Apparent Subdiffusion Inherent to Single Particle Tracking
A. Delon, Y. Usson, J. Derouard, T. Biben, C. Souchier 
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Volume 111, Issue 2, Pages (July 2016)
Volume 99, Issue 4, Pages (August 2010)
On the Origin of Kinesin Limping
Volume 100, Issue 8, Pages (April 2011)
Seung Joong Kim, Charles Dumont, Martin Gruebele  Biophysical Journal 
Volume 107, Issue 2, Pages (July 2014)
Volume 96, Issue 2, Pages (January 2009)
Mechanical Distortion of Single Actin Filaments Induced by External Force: Detection by Fluorescence Imaging  Togo Shimozawa, Shin'ichi Ishiwata  Biophysical.
Christopher Deufel, Michelle D. Wang  Biophysical Journal 
Mesoscale Simulation of Blood Flow in Small Vessels
Qiaochu Li, Stephen J. King, Ajay Gopinathan, Jing Xu 
Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei
Volume 96, Issue 9, Pages (May 2009)
Mark C. Leake, David Wilson, Mathias Gautel, Robert M. Simmons 
Real-Time Measurement of Spontaneous Antigen-Antibody Dissociation
Volume 104, Issue 1, Pages (January 2013)
Volume 103, Issue 2, Pages (July 2012)
Volume 90, Issue 8, Pages (April 2006)
Volume 87, Issue 3, Pages (September 2004)
Comment to the Article by Michael J
Irina V. Dobrovolskaia, Gaurav Arya  Biophysical Journal 
Focal Adhesion Kinase Stabilizes the Cytoskeleton
Optical Trapping Nanometry of Hypermethylated CPG-Island DNA
Volume 83, Issue 2, Pages (August 2002)
Volume 101, Issue 4, Pages (August 2011)
Daniel Krofchick, Mel Silverman  Biophysical Journal 
Dynamics of Active Semiflexible Polymers
Michael Schlierf, Felix Berkemeier, Matthias Rief  Biophysical Journal 
A Mesoscale Model of DNA and Its Renaturation
Molecular Mechanisms and Kinetics between DNA and DNA Binding Ligands
Volume 95, Issue 5, Pages (September 2008)
Continuous Allosteric Regulation of a Viral Packaging Motor by a Sensor that Detects the Density and Conformation of Packaged DNA  Zachary T. Berndsen,
K.A. Riske, L.Q. Amaral, H.-G. Döbereiner, M.T. Lamy 
Cyclic AMP Diffusion Coefficient in Frog Olfactory Cilia
Arnoldus W.P. Vermeer, Willem Norde  Biophysical Journal 
Volume 85, Issue 5, Pages (November 2003)
Dustin B. McIntosh, Gina Duggan, Quentin Gouil, Omar A. Saleh 
Interaction of Oxazole Yellow Dyes with DNA Studied with Hybrid Optical Tweezers and Fluorescence Microscopy  C.U. Murade, V. Subramaniam, C. Otto, Martin.
Role of Ca2+ and Cross-Bridges in Skeletal Muscle Thin Filament Activation Probed with Ca2+ Sensitizers  Philip A. Wahr, Joseph M. Metzger  Biophysical.
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Single-Molecule Measurement of the Stiffness of the Rigor Myosin Head
Subpiconewton Dynamic Force Spectroscopy Using Magnetic Tweezers
Ricksen S. Winardhi, Qingnan Tang, Jin Chen, Mingxi Yao, Jie Yan 
Volume 83, Issue 6, Pages (December 2002)
Volume 93, Issue 8, Pages (October 2007)
Zackary N. Scholl, Weitao Yang, Piotr E. Marszalek  Biophysical Journal 
Quantitative Modeling and Optimization of Magnetic Tweezers
Volume 83, Issue 2, Pages (August 2002)
The Stochastic Dynamics of Filopodial Growth
Presentation transcript:

Volume 76, Issue 1, Pages 409-413 (January 1999) Estimating the Persistence Length of a Worm-Like Chain Molecule from Force- Extension Measurements  C. Bouchiat, M.D. Wang, J.-F. Allemand, T. Strick, S.M. Block, V. Croquette  Biophysical Journal  Volume 76, Issue 1, Pages 409-413 (January 1999) DOI: 10.1016/S0006-3495(99)77207-3 Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 1 Experimental data (points) and fit (solid line) corresponding to figure 5 of Wang et al. (1997). The inset is a blow-up of the small force regime. The optical tweezers used here allow for quick measurements with roughly a constant noise level when the force is <6 pN (see the inset) and an increasing error above 6 pN as indicated by the two error bars (shifted by 25nm from the data). The exact model leads to a better overall fit in terms of χν2. Biophysical Journal 1999 76, 409-413DOI: (10.1016/S0006-3495(99)77207-3) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 2 Experimental data and fit corresponding to the extension of a λ-DNA molecule in 10mM PB buffer obtained using the Brownian motion method (Strick et al., 1996). This method is particularly well suited to measuring small forces. Moreover, the relative error in the force (vertical error bars) may be kept constant by adjusting the acquisition time. The semilogarithmic scale facilitates visualization of the large force range. The WLC model (solid line) nicely fits the experimental data. Note that the forces are too small to allow an accurate measurement of K0. The error bars correspond to statistical errors, but the systematic ones are more difficult to evaluate. We estimate the calibration errors in the range of 5%. Biophysical Journal 1999 76, 409-413DOI: (10.1016/S0006-3495(99)77207-3) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 3 Effective persistence length versus relative extension (A) or normalized force (B). For each point of a force-versus-extension curve, the effective persistence length is computed using Eq. 14. A perfect WLC model leads to an effective persistence length independent of the extension and the force. In (A) we characterize the interpolation formula (Eq. 10) of Marko and Siggia (dashed line) (Bustamante et al., 1994), the Vologodskii interpolation formula (Vologodskii, 1994) (solid line), and the Moroz and Nelson (1997) formula (drawn in solid line in its validity domain ((F>0.1 pN) and in dashed line at lower forces). (B) Analysis of the experimental of Fig. 2 shows no significant variation of Lpeff with either extension or force. This confirms the experimental validity of the WLC model. Compare B with figure 4 of Marko and Siggia (1995). Biophysical Journal 1999 76, 409-413DOI: (10.1016/S0006-3495(99)77207-3) Copyright © 1999 The Biophysical Society Terms and Conditions