Volume 18, Issue 5, Pages (November 2015)

Slides:



Advertisements
Similar presentations
Smita Srivastava, Patricia S. Grace, Joel D. Ernst  Cell Host & Microbe 
Advertisements

Volume 16, Issue 4, Pages (October 2014)
Volume 6, Issue 2, Pages (August 2009)
Volume 19, Issue 2, Pages (February 2016)
Mitochondrial ER Contacts Are Crucial for Mitophagy in Yeast
Community Behavior and Spatial Regulation within a Bacterial Microcolony in Deep Tissue Sites Serves to Protect against Host Attack  Kimberly M. Davis,
Volume 12, Issue 3, Pages (September 2012)
Volume 22, Issue 17, Pages (September 2012)
Volume 57, Issue 3, Pages (February 2015)
Volume 15, Issue 1, Pages (January 2014)
Volume 11, Issue 6, Pages (June 2012)
Jamaal L. Benjamin, Rhea Sumpter, Beth Levine, Lora V. Hooper 
Volume 16, Issue 2, Pages (August 2014)
Entrapment of Intracytosolic Bacteria by Septin Cage-like Structures
The UPEC Pore-Forming Toxin α-Hemolysin Triggers Proteolysis of Host Proteins to Disrupt Cell Adhesion, Inflammatory, and Survival Pathways  Bijaya K.
Volume 7, Issue 6, Pages (June 2010)
Volume 24, Issue 17, Pages (September 2014)
Volume 2, Issue 5, Pages (November 2007)
Shu-Jung Chang, Jeongmin Song, Jorge E. Galán  Cell Host & Microbe 
Brian Yordy, Norifumi Iijima, Anita Huttner, David Leib, Akiko Iwasaki 
Volume 27, Issue 1, Pages (July 2007)
Stuart W. Hicks, Guillaume Charron, Howard C. Hang, Jorge E. Galán 
Volume 9, Issue 6, Pages (June 2011)
Volume 15, Issue 5, Pages (May 2014)
Volume 18, Issue 2, Pages (August 2015)
Volume 21, Issue 3, Pages (March 2017)
Volume 26, Issue 1, Pages (January 2016)
Volume 36, Issue 4, Pages (April 2012)
Distinct Autophagosomal-Lysosomal Fusion Mechanism Revealed by Thapsigargin- Induced Autophagy Arrest  Ian G. Ganley, Pui-Mun Wong, Noor Gammoh, Xuejun.
Volume 17, Issue 6, Pages (June 2015)
Smita Srivastava, Patricia S. Grace, Joel D. Ernst  Cell Host & Microbe 
Volume 22, Issue 4, Pages e5 (October 2017)
Extracellular M. tuberculosis DNA Targets Bacteria for Autophagy by Activating the Host DNA-Sensing Pathway  Robert O. Watson, Paolo S. Manzanillo, Jeffery S.
Volume 22, Issue 1, Pages e7 (July 2017)
Volume 9, Issue 6, Pages (June 2011)
Volume 4, Issue 5, Pages (November 2008)
Volume 19, Issue 7, Pages (July 2012)
Volume 16, Issue 2, Pages (August 2014)
Volume 17, Issue 9, Pages (November 2016)
Volume 37, Issue 6, Pages (December 2012)
Volume 17, Issue 4, Pages (April 2015)
Mitochondria Restrict Growth of the Intracellular Parasite Toxoplasma gondii by Limiting Its Uptake of Fatty Acids  Lena Pernas, Camilla Bean, John C.
Volume 13, Issue 4, Pages (April 2013)
Volume 9, Issue 4, Pages (April 2011)
Volume 5, Issue 5, Pages (December 2013)
Volume 12, Issue 6, Pages (December 2012)
Volume 13, Issue 20, Pages (October 2003)
Volume 17, Issue 6, Pages (June 2015)
Yiuka Leung, Shabeen Ally, Marcia B. Goldberg  Cell Host & Microbe 
Salmonella SPI1 Effector SipA Persists after Entry and Cooperates with a SPI2 Effector to Regulate Phagosome Maturation and Intracellular Replication 
Telomeric Noncoding RNA TERRA Is Induced by Telomere Shortening to Nucleate Telomerase Molecules at Short Telomeres  Emilio Cusanelli, Carmina Angelica Perez.
Volume 11, Issue 6, Pages (June 2012)
Enteropathogenic Escherichia coli Recruits the Cellular Inositol Phosphatase SHIP2 to Regulate Actin-Pedestal Formation  Katherine Smith, Daniel Humphreys,
Volume 2, Issue 2, Pages (August 2007)
Volume 11, Issue 4, Pages (April 2012)
Translocation of a Vibrio cholerae Type VI Secretion Effector Requires Bacterial Endocytosis by Host Cells  Amy T. Ma, Steven McAuley, Stefan Pukatzki,
Volume 16, Issue 4, Pages (October 2014)
Global Analysis of Palmitoylated Proteins in Toxoplasma gondii
Volume 2, Issue 6, Pages (December 2007)
Tuo Li, Jin Chen, Ileana M. Cristea  Cell Host & Microbe 
Teemu P. Miettinen, Mikael Björklund  Cell Reports 
Volume 9, Issue 6, Pages (June 2011)
Volume 8, Issue 2, Pages (August 2010)
Volume 27, Issue 7, Pages e5 (May 2019)
Volume 156, Issue 4, Pages (February 2014)
Volume 14, Issue 4, Pages (February 2016)
Volume 23, Issue 5, Pages e5 (May 2018)
Dengue Virus-Induced Autophagy Regulates Lipid Metabolism
Translocation of a Vibrio cholerae Type VI Secretion Effector Requires Bacterial Endocytosis by Host Cells  Amy T. Ma, Steven McAuley, Stefan Pukatzki,
Yun-Gui Yang, Tomas Lindahl, Deborah E. Barnes  Cell 
Presentation transcript:

Volume 18, Issue 5, Pages 527-537 (November 2015) Autophagy Proteins Promote Repair of Endosomal Membranes Damaged by the Salmonella Type Three Secretion System 1  Saskia Kreibich, Mario Emmenlauer, Jennifer Fredlund, Pauli Rämö, Christian Münz, Christoph Dehio, Jost Enninga, Wolf-Dietrich Hardt  Cell Host & Microbe  Volume 18, Issue 5, Pages 527-537 (November 2015) DOI: 10.1016/j.chom.2015.10.015 Copyright © 2015 Elsevier Inc. Terms and Conditions

Cell Host & Microbe 2015 18, 527-537DOI: (10.1016/j.chom.2015.10.015) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 1 Genome-wide RNAi Screen Implicating Autophagy (A) T2-gfp reporter assay (see Supplemental Information; Misselwitz et al., 2011a). (B and C) Image-based screen of HeLa nuclei (DAPI), actin (DY-547 phalloidin), and T2-gfp expression. Bar, 10 μm. CellProfiler-based identification of nuclei, cell borders, and T2-gfp-expressing S.TmSopE (Supplemental Information). (D) Results (data shown in Table S1B). Autophagy was identified by KEGG-pathway analysis (Luo and Brouwer, 2013) and phenotypic clustering of the 5,000 strongest hits. Red frames indicate hits from earlier work (Misselwitz et al., 2011a) and inhibitors. (E–H) Knockdown phenotypes (Z scores) of autophagy hits from Table S1B. Dots indicate screen data (black, GWS; gray, Ambion; red, esiRNA; turquoise, QIAGEN; dark/light blue, Dharmacon pooled/unpooled); bar indicates mean with SD. Color code as in (D). Stippled line: cutoff = −0.5 Z score (≈30% attenuation). ATG7 is involved in ATG12 and ATG8 systems (G and H). Cell Host & Microbe 2015 18, 527-537DOI: (10.1016/j.chom.2015.10.015) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 2 Impact of atg5 on Distinct Stages of S.Tm Infection (A) T2-gfp expression at 4 hr p.i. of atg5+/+ (dark) or atg5−/− (light gray) MEFs with S.TmSopE (MOI = 60). (B) Binding of S.TmΔ4 (MOI = 125; 6 min p.i.). (C) Ruffling triggered by S.TmSopE (MOI = 80; 12 min p.i.; 571 or 549 cells analyzed). (D) Gentamicin-protection assay (S.TmSopE CFU; 1 hr p.i.; MOI = 10). (E) Time course of S.TmSopE infection (T2-gfp assay; 1–12 hr p.i.; MOI = 40). (F) Gentamicin-protection time course assay (S.TmSopE CFU; MOI = 10). (G) Intracellular growth ([CFU (6 hr p.i.)] / [CFU (2 hr p.i.)]); data from (F). (H) Fluorescence microcopy of atg5+/+ or atg5−/− MEF 6 hr p.i. with S.TmSopE. Red, α-LPS-CY5 (“all S.Tm”); green, T2-gfp; blue, DAPI. Bar indicates 5 μm. All data were from ≥ 5 independent replicates (whisker bar indicates mean and SD). Cell Host & Microbe 2015 18, 527-537DOI: (10.1016/j.chom.2015.10.015) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 3 Endosome Marker Localization to S.TmSopE in WT or atg5−/− MEFs (A–F) MEFs transfected with endosome reporters as indicated and analyzed at 2 or 4 hr p.i. with S.TmSopE (MOI = 40; Volocity quantitation module). Association of Rab5 (A), Rab7 (B), and Lamp1 (C) to T2-gfp+ S.TmSopE in atg5+/+ and atg5−/− MEFs is shown. Association of Rab5 (D), Rab7 (E), and Lamp1 (F) to S.TmSopE expressing constitutive GFP in atg5+/+ and atg5−/− MEFs is also shown. All data were from ≥ 2 independent experiments. Circles indicate average fluorescence (AU, arbitrary unit) around ten randomly picked S.Tm (mean and SEM). (G) Representative fluorescence microscopy image of atg5+/+ MEFs at 2 hr p.i. with S.TmSopE. Orange, stable LC3-RFP; green, transiently expressed Rab7-GFP; red, α-LPS-CY5 antibody staining all S.TmSopE. Bar, 5 μm. Cell Host & Microbe 2015 18, 527-537DOI: (10.1016/j.chom.2015.10.015) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 4 Time Course of SCV Maturation in S.TmΔT2-Infected Cells atg5+/+ or atg5−/− MEFs were infected with S.TmΔT2 (T2-gfp assay [1–12 hr p.i.; MOI = 40]). Data were from ≥ 6 independent experiments (dots, data point; whisker bar, mean and SD). Cell Host & Microbe 2015 18, 527-537DOI: (10.1016/j.chom.2015.10.015) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 5 Time Course of SCV Maturation in S.TmΔT1-Infected Cells (A) atg5+/+ or atg5−/− MEFs were infected with a mixture of S.TmSopE (“helper”; trigger ruffles; no gfp plasmid; MOI = 40–60) and S.TmΔT1 (T2-gfp reporter; MOI = 150–250). T2-gfp expression was analyzed as above (Figure 2E). Data were from ≥ 6 independent experiments. (B) Gentamicin-protection assay time course with a mixture of S.TmSopE (“helper”; no gfp plasmid; MOI = 8) and S.TmΔT1 (T2-gfp reporter; MOI = 40). Pathogen loads were determined by plating. (C) Intracellular growth ([CFU (6 hr p.i.)]/[CFU (2 hr p.i.)]); data from (B). Dots, data points; whisker bar, mean and SD. Cell Host & Microbe 2015 18, 527-537DOI: (10.1016/j.chom.2015.10.015) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 6 Impact of Autophagy on the T1-Expressing S.Tm Subpopulation (A) Representative images of atg5+/+ or atg5−/− MEFs stably expressing LC3-GFP at 40 min p.i. with S.TmSopE (constitutive mCherry; MOI ≈30); bar, 10 μm. (B) Time course of LC3-GFP recruitment to S.TmSopE (constitutive mCherry; 40–240 min p.i.; MOI ≈30). (C) LC3-GFP recruitment to S.TmSopE at MOI = 1 or 10 (constitutive mCherry; 40 min p.i.). (D) LC3-RFP recruitment in atg5+/+ MEFs to S.TmSopE at MOI = 1 or 10 at 2 hr p.i. Green, data for T2-gfp expressing S.TmSopE; gray, data for S.TmSopE expressing constitutive GFP. Data are from ≥ 2 independent experiments. Dots, average LC3 fluorescence (AU, arbitrary unit) per ten S.Tm; whisker bar, mean and SEM. Cell Host & Microbe 2015 18, 527-537DOI: (10.1016/j.chom.2015.10.015) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 7 Fluid-Phase Marker Retention in the SCV (A) atg5+/+ or atg5−/− MEFs were incubated with 500 kDa FITC-dextran during a 90 min infection with S.TmSopE (constitutive mCherry; MOI = 40) or S.TmΔT1 (constitutive mCherry, MOI = 150; unlabeled helper strain = S.TmSopE). The FITC-dextran signal surrounding S.TmSopE or S.TmΔT1 was quantified. Right side: same as left side, but using Gal3-mOrange-expressing MEFs and α-LPS staining to detect S.TmSopE. (B) Osmotic shock assay. atg5+/+ or atg5−/− MEFs expressing Gal3-mOrange were incubated with 500 kDa Blue-dextran during a 90 min infection with S.TmΔT1 (constitutive GFP) internalized via HGF treatment. No infection = background; osmotic shock was inflicted after 57 min, i.e., by 10 min 0.5 M sucrose (PBS, 10% PEG1000), 3 min in 60% PBS, and 20 min recovery in culture media. The Blue-dextran signal surrounding S.TmΔT1 was quantified. Extracellular S.TmΔT1, identified by α-LPS antibodies, were excluded from analysis. Data are from ≥ 3 independent experiments. Dots, average dextran fluorescence (AU, arbitrary unit) per 10 S.Tm; whisker bar, mean and SEM. (C) Representative images from (B). Bar, 10 μm. (D) Model depicting the role of autophagy in promoting repair of T1-damaged endosome membranes. Red, T1-expressing S.Tm; gray, S.Tm without T1 expression; green, T2 expression; yellow, autophagy proteins. Cell Host & Microbe 2015 18, 527-537DOI: (10.1016/j.chom.2015.10.015) Copyright © 2015 Elsevier Inc. Terms and Conditions