Volume 20, Issue 3, Pages (March 2011)

Slides:



Advertisements
Similar presentations
Derek Passer, Annebel van de Vrugt, Ayhan Atmanli, Ibrahim J. Domian 
Advertisements

Matrix Metalloproteinase-9 Is Required for Tumor Vasculogenesis but Not for Angiogenesis: Role of Bone Marrow-Derived Myelomonocytic Cells  G-One Ahn,
Volume 19, Issue 1, Pages (January 2014)
Volume 11, Issue 2, Pages (August 2012)
Fate Restriction in the Growing and Regenerating Zebrafish Fin
Volume 8, Issue 4, Pages (April 2011)
The reduction of hemodynamic loading assists self-regeneration of the injured heart by increasing cell proliferation, inhibiting cell apoptosis, and inducing.
Volume 74, Issue 6, Pages (June 2012)
Volume 23, Issue 3, Pages (September 2012)
Volume 33, Issue 4, Pages (May 2015)
Volume 8, Issue 1, Pages (January 2005)
Volume 28, Issue 5, Pages (March 2014)
Retinoic Acid Regulates Differentiation of the Secondary Heart Field and TGFβ- Mediated Outflow Tract Septation  Peng Li, Mohammad Pashmforoush, Henry.
Volume 10, Issue 3, Pages (March 2006)
Volume 20, Issue 3, Pages e4 (March 2017)
Gregory Nachtrab, Michael Czerwinski, Kenneth D. Poss  Current Biology 
Volume 43, Issue 5, Pages e3 (December 2017)
Volume 20, Issue 5, Pages (May 2011)
Volume 26, Issue 5, Pages (September 2013)
Gufa Lin, Ying Chen, Jonathan M.W. Slack  Developmental Cell 
Volume 14, Issue 2, Pages (February 2008)
Volume 23, Issue 13, Pages (July 2013)
Hosein Kouros-Mehr, Euan M. Slorach, Mark D. Sternlicht, Zena Werb 
Volume 22, Issue 3, Pages (March 2012)
Activin-βA Signaling Is Required for Zebrafish Fin Regeneration
Volume 8, Issue 4, Pages (April 2005)
Volume 127, Issue 3, Pages (November 2006)
Molecular Analysis of Stem Cells and Their Descendants during Cell Turnover and Regeneration in the Planarian Schmidtea mediterranea  George T. Eisenhoffer,
Volume 24, Issue 6, Pages (March 2013)
Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration
Volume 18, Issue 2, Pages (February 2010)
Volume 16, Issue 2, Pages (February 2009)
Volume 24, Issue 5, Pages (March 2013)
Volume 10, Issue 2, Pages (February 2018)
Volume 10, Issue 5, Pages (May 2012)
Volume 43, Issue 6, Pages e5 (December 2017)
Samuel A. LoCascio, Sylvain W. Lapan, Peter W. Reddien 
Volume 23, Issue 5, Pages (November 2012)
Volume 22, Issue 3, Pages (March 2012)
Julien Ablain, Ellen M. Durand, Song Yang, Yi Zhou, Leonard I. Zon 
Valerie Horsley, Katie M Jansen, Stephen T Mills, Grace K Pavlath  Cell 
Volume 25, Issue 12, Pages (December 2017)
Volume 15, Issue 7, Pages (May 2016)
Volume 21, Issue 3, Pages (September 2011)
Retinal Injury, Growth Factors, and Cytokines Converge on β-Catenin and pStat3 Signaling to Stimulate Retina Regeneration  Jin Wan, Xiao-Feng Zhao, Anne.
Matrix Metalloproteinase-9 Is Required for Tumor Vasculogenesis but Not for Angiogenesis: Role of Bone Marrow-Derived Myelomonocytic Cells  G-One Ahn,
Volume 124, Issue 5, Pages (May 2003)
Volume 25, Issue 3, Pages (May 2013)
Isabelle Plaisance et al. BTS 2016;j.jacbts
Volume 23, Issue 2, Pages (August 2012)
The BMP Signaling Gradient Patterns Dorsoventral Tissues in a Temporally Progressive Manner along the Anteroposterior Axis  Jennifer A. Tucker, Keith.
Volume 22, Issue 3, Pages (March 2012)
Volume 7, Issue 1, Pages (January 2008)
Jin Wan, Rajesh Ramachandran, Daniel Goldman  Developmental Cell 
Volume 23, Issue 4, Pages (October 2012)
Volume 16, Issue 5, Pages (August 2016)
The Nf1 Tumor Suppressor Regulates Mouse Skin Wound Healing, Fibroblast Proliferation, and Collagen Deposited by Fibroblasts  Radhika P. Atit, Maria J.
Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration
Muscle Satellite Cells Are Primed for Myogenesis but Maintain Quiescence with Sequestration of Myf5 mRNA Targeted by microRNA-31 in mRNP Granules  Colin G.
Volume 20, Issue 5, Pages (May 2011)
Volume 2, Issue 1, Pages (July 2007)
Association of electrostimulation with cell transplantation in ischemic heart disease  Abdel Shafy, MD, Thomas Lavergne, MD, Christian Latremouille, MD,
Volume 10, Issue 3, Pages (March 2018)
Volume 19, Issue 4, Pages (April 2017)
Christoph Brenner, Wolfgang-Michael Franz  Cell Stem Cell 
Volume 9, Issue 1, Pages (October 2014)
Cryocauterization induces extensive cardiac apoptosis.
Julien Ablain, Ellen M. Durand, Song Yang, Yi Zhou, Leonard I. Zon 
Volume 24, Issue 1, Pages (January 2016)
Volume 15, Issue 5, Pages (May 2007)
Presentation transcript:

Volume 20, Issue 3, Pages 397-404 (March 2011) Retinoic Acid Production by Endocardium and Epicardium Is an Injury Response Essential for Zebrafish Heart Regeneration  Kazu Kikuchi, Jennifer E. Holdway, Robert J. Major, Nicola Blum, Randall D. Dahn, Gerrit Begemann, Kenneth D. Poss  Developmental Cell  Volume 20, Issue 3, Pages 397-404 (March 2011) DOI: 10.1016/j.devcel.2011.01.010 Copyright © 2011 Elsevier Inc. Terms and Conditions

Developmental Cell 2011 20, 397-404DOI: (10.1016/j.devcel.2011.01.010) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 1 Resection of the Ventricular Apex Stimulates Immediate, Organ-Wide Morphological and Molecular Changes in Endocardium (A–D) Transmission electron microscope (TEM) analyses of endocardium in uninjured (A) and injured ventricles (B–D). Arrowheads, endocardial nuclei; arrows, endocardial cell bodies; M, cardiac muscle; asterisk, red blood cell. Scale bar represents 2 μm. (E–K) raldh2 expression assessed by in situ hybridization (E–J) and Raldh2 immunostaining (K) in uninjured (E) and injured (F–K) ventricles. Brackets in (I–K), injury site. Arrows in (J and K), epicardial cells. Scale bar represents 100 μm (E–Q). (L–N) Confocal images of altered endocardial cell shape, and enhanced flk1 driven DsRed2 fluorescence in the injury site (L, brackets) in a 7 dpa cmlc2:EGFP; flk1:DsRed2 double transgenic ventricle. Arrowheads, endocardial nuclei; arrows, endocardial lining of myofiber. An antibody against DsRed was used. DAPI (4′-6-Diamidino-2-phenylindole) stains nuclei. (O–Q) Sections of 7 dpa fli1:EGFP (O), hand2:EGFP (P), or gata5:EGFP (Q) transgenic ventricles. Brackets, injury sites. Arrowheads in inset, Raldh2+/EGFP+ endocardial nuclei with rounded morphology. Developmental Cell 2011 20, 397-404DOI: (10.1016/j.devcel.2011.01.010) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 2 Induction of raldh2 Expression in Various Injury Models (A and B) Stab injuries into the ventricular apex assessed for raldh2 induction (A) and fli1:EGFP expression (B) at 7 days poststab (dps). Arrows, needle entry site. Scale bar represents 100 μm. (C) Confocal image of Raldh2 immunofluorescence in fli1:EGFP+ endocardial cells with rounded morphology at the injury site (arrowheads). Scale bar represents 20 μm. (D–H) raldh2 induction after intraperitoneal LPS or vehicle (PBS) injection. Scale bar represents 100 μm (D–L). (I–L) Endocardial raldh2 (J), hand2 (K), and gata5 (L) expression surrounding spontaneous infarcts (asterisks) within cultured ventricular explants. Dead cardiac tissue was identifiable by the absence of cell nuclei (I). Developmental Cell 2011 20, 397-404DOI: (10.1016/j.devcel.2011.01.010) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 3 Transgenic Inhibition of RA Signaling Blocks Cardiomyocyte Proliferation during Regeneration (A) Assessment of Mef2+PCNA+ cells (arrows) in wild-type (wt) and hsp70:dn-zrar transgenic fish at 7 dpa, after a single heat-shock at 6 dpa. Maximum projection images of 10 μm Z stacks are shown. Insets, high-magnification images of the rectangle. Arrowheads, proliferating epicardial cells; brackets, injury site. Scale bar represents 100 μm (A and C). (B) Quantification of CM proliferation in wt and hsp70:dn-zrar transgenic fish at 7 dpa. Data are mean ± standard error of mean (SEM) from 6 animals each (3097 wt and 2482 transgenic CMs analyzed). ∗p < 3 × 10−5, Student's t test. (C) Assessment of Mef2/PCNA double-positive cells (arrows) in wt and hsp70:cyp26a1 transgenic fish at 7 dpa, after a single heat-shock at 6 dpa. Maximum projection images of 10 μm Z stacks are shown. (D) Quantification of CM proliferation in wt and hsp70:cyp26a1 transgenic fish at 7 dpa. Data are mean ± SEM from 4 wt and 6 transgenic animals (3888 wt and 4760 transgenic CMs analyzed). ∗p < 2 × 10−4, Student's t test. Developmental Cell 2011 20, 397-404DOI: (10.1016/j.devcel.2011.01.010) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 4 Cardiac Injury Responses in Polypterus, Mouse, and Zebrafish (A–D) raldh2 (p. raldh2) expression by in situ hybridization in uninjured (A) and injured (B–D) polypterus ventricles. Arrowheads in (A), pigment cells. Brackets in (B–D), injury site. Insets in (B–D), lateral ventricular wall including epicardium (ep). Arrows in (D), p. raldh2-expressing epicardial cells. Scale bar represents 100 μm (A–H). (E–G) Assessment of Mef2+PCNA+ cells (arrows) in uninjured (E) and injured (F and G) polypterus ventricles. Brackets in (F), injury site. Insets, high-zoom images of the rectangle. Arrowhead in (G), entry site of glass needle. Arrows in (F and G), proliferating CMs. (H) In situ hybridization of p. raldh2 after stab injury (arrowhead). (I–L) Raldh2 (m. Raldh2) expression by in situ hybridization at various time points post-ligation (pl). Insets in (J–L), high-zoom images of the rectangle. ep, epicardium; en, endocardium; LVL, left ventricular lumen. Scale bar represents 200 μm. (M) Summary of injury responses observed in polypterus, zebrafish, and mouse hearts. Developmental Cell 2011 20, 397-404DOI: (10.1016/j.devcel.2011.01.010) Copyright © 2011 Elsevier Inc. Terms and Conditions