Striatal Local Circuitry: A New Framework for Lateral Inhibition

Slides:



Advertisements
Similar presentations
October 2,  Nerve cells  Conduct impulses that carry signals  Types  Sensory ▪ Respond to incoming stimuli ▪ Transmit information from senses.
Advertisements

Volume 62, Issue 5, Pages (June 2009)
Volume 92, Issue 5, Pages (December 2016)
Neurons in the Ventral Striatum Exhibit Cell-Type-Specific Representations of Outcome during Learning  Hisham E. Atallah, Andrew D. McCool, Mark W. Howe,
Robin Tremblay, Soohyun Lee, Bernardo Rudy  Neuron 
How Addictive Drugs Disrupt Presynaptic Dopamine Neurotransmission
Mark E.J. Sheffield, Michael D. Adoff, Daniel A. Dombeck  Neuron 
Collins Assisi, Mark Stopfer, Maxim Bazhenov  Neuron 
Cell-Type-Specific Sensorimotor Processing in Striatal Projection Neurons during Goal- Directed Behavior  Tanya Sippy, Damien Lapray, Sylvain Crochet,
Mind, Brain & Behavior Friday January 31, 2003.
Volume 9, Issue 3, Pages (September 2017)
Marina R. Picciotto, Michael J. Higley, Yann S. Mineur  Neuron 
Verena Wolfram, Richard A. Baines  Trends in Neurosciences 
The Brain as an Efficient and Robust Adaptive Learner
Connecting Circuits for Supraspinal Control of Locomotion
Volume 81, Issue 4, Pages (February 2014)
Differential Dynamics of Activity Changes in Dorsolateral and Dorsomedial Striatal Loops during Learning  Catherine A. Thorn, Hisham Atallah, Mark Howe,
Parkinson’s Disease: A Thalamostriatal Rebalancing Act?
Local Spinal Cord Circuits and Bilateral Mauthner Cell Activity Function Together to Drive Alternative Startle Behaviors  Yen-Chyi Liu, Melina E. Hale 
Neuropeptide Transmission in Brain Circuits
Volume 82, Issue 1, Pages (April 2014)
Striatal Plasticity and Basal Ganglia Circuit Function
Pausing to Regroup: Thalamic Gating of Cortico-Basal Ganglia Networks
Adult Neurogenesis and the Future of the Rejuvenating Brain Circuits
Preceding Inhibition Silences Layer 6 Neurons in Auditory Cortex
Volume 62, Issue 5, Pages (June 2009)
Eleanor H. Simpson, Christoph Kellendonk, Eric Kandel  Neuron 
Volume 92, Issue 1, Pages (October 2016)
Volume 71, Issue 5, Pages (September 2011)
Nuria Flames, Oscar Marín  Neuron  Volume 46, Issue 3, Pages (May 2005)
Volume 97, Issue 4, Pages e6 (February 2018)
Aligning a Synapse Neuron
Neurons in the Ventral Striatum Exhibit Cell-Type-Specific Representations of Outcome during Learning  Hisham E. Atallah, Andrew D. McCool, Mark W. Howe,
Thomas Akam, Dimitri M. Kullmann  Neuron 
The Basal Ganglia Over 500 Million Years
Collins Assisi, Mark Stopfer, Maxim Bazhenov  Neuron 
Volume 77, Issue 4, Pages (February 2013)
Yann Zerlaut, Alain Destexhe  Neuron 
Extended Interneuronal Network of the Dentate Gyrus
Elizabeth A.K. Phillips, Christoph E. Schreiner, Andrea R. Hasenstaub 
Ryan G. Natan, Winnie Rao, Maria N. Geffen  Cell Reports 
Computational Models of Grid Cells
Theofanis Karayannis, Gordon Fishell  Cell Stem Cell 
Volume 97, Issue 3, Pages e5 (February 2018)
Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms
Yael Zahar, Genela Morris  Neuron  Volume 82, Issue 5, Pages (June 2014)
Michael Häusser, Beverley A Clark  Neuron 
Dichotomous Organization of the External Globus Pallidus
Hiroyuki K. Kato, Shea N. Gillet, Jeffry S. Isaacson  Neuron 
Han Xu, Hyo-Young Jeong, Robin Tremblay, Bernardo Rudy  Neuron 
Giulia Quattrocolo, Gord Fishell, Timothy J. Petros  Cell Reports 
Perisomatic Inhibition
Adult Neurogenesis and the Future of the Rejuvenating Brain Circuits
Volume 88, Issue 6, Pages (December 2015)
Serotonergic Modulation of Sensory Representation in a Central Multisensory Circuit Is Pathway Specific  Zheng-Quan Tang, Laurence O. Trussell  Cell Reports 
Volume 15, Issue 5, Pages R154-R158 (March 2005)
Antagonistic but Not Symmetric Regulation of Primary Motor Cortex by Basal Ganglia Direct and Indirect Pathways  Ian A. Oldenburg, Bernardo L. Sabatini 
The Brain as an Efficient and Robust Adaptive Learner
Aya Matsui, Veronica A. Alvarez  Neuron 
Synaptic Mechanisms of Forward Suppression in Rat Auditory Cortex
Giulia Quattrocolo, Gord Fishell, Timothy J. Petros  Cell Reports 
David C. Spanswick, Stephanie E. Simonds, Michael A. Cowley 
The Smoking Gun in Nicotine-Induced Anorexia
Extended Interneuronal Network of the Dentate Gyrus
Volume 82, Issue 4, Pages (May 2014)
Rapid Neocortical Dynamics: Cellular and Network Mechanisms
Organization of the Locus Coeruleus-Norepinephrine System
When Acetylcholine Unlocks Feedback Inhibition in Cortex
Maxwell H. Turner, Fred Rieke  Neuron 
Volume 19, Issue 12, Pages (June 2017)
Presentation transcript:

Striatal Local Circuitry: A New Framework for Lateral Inhibition Dennis A. Burke, Horacio G. Rotstein, Veronica A. Alvarez  Neuron  Volume 96, Issue 2, Pages 267-284 (October 2017) DOI: 10.1016/j.neuron.2017.09.019 Copyright © 2017 Terms and Conditions

Figure 1 Diversity of Cell Types of Striatal Interneurons The plot represents the estimated proportions of each subtype of striatal interneuron identified based on their expression of neurotransmitter (inner donut), other molecular markers (middle donut), and electrophysiological properties (outer donut). Abbreviations: ACh, acetylcholine; ChAT, choline-acetyl transferase; TAN, tonically active neurons; TH, tyrosine hydroxlase; CR, calretinin; SOM, somatostatin; NOS, nitric oxide synthase; NPY, neuropeptide Y; LTS, low-threshold spiking; NGF, neurogliaform; 5HT3R, serotonin type-3 receptor; FA, fast adapting; PV, parvalbumin; FS, fast spiking. ∗, SOM/NOS LTS neurons are also tonically active, although not classically referred as TANs. Neuron 2017 96, 267-284DOI: (10.1016/j.neuron.2017.09.019) Copyright © 2017 Terms and Conditions

Figure 2 Axo-axonal Modulation in the Striatum Simple diagram of known axo-axonal presynaptic modulation by dopamine and acetylcholine (ACh) in the striatum. D2, dopamine D2 receptor; M5, M5 muscarinic ACh receptor; M2/4, M2 and M4 muscarinic ACh receptors; nAR, nicotinic ACh receptor. Neuron 2017 96, 267-284DOI: (10.1016/j.neuron.2017.09.019) Copyright © 2017 Terms and Conditions

Figure 3 Main Identified Synaptic Connections between Local Striatal Neurons Schematic showing intrastriatal connectivity between interneurons and projection neurons. Interneurons displayed with molecular markers used to identify cells during experiments. Abbreviations: dSPN, direct pathway projecting medium spiny neuron; iSPN, indirect pathway projecting medium spiny neuron; ChAT, choline-acetyl transferase; TH, tyrosine hydroxlase; SOM, somatostatin; NOS, nitric oxide synthase; NPY, neuropeptide Y; NGF, neurogliaform; 5HT3R, serotonin 3 receptor; PV, parvalbumin; Neuron 2017 96, 267-284DOI: (10.1016/j.neuron.2017.09.019) Copyright © 2017 Terms and Conditions

Figure 4 Proposed Model of Organization of Striatal Functional Units with Lateral Inhibition within and between Units (A) Colored circles represent multiple SPNs from each subclass that are activated together during behavior forming a cluster or ensemble. Each functional unit contains one dSPN cluster and one iSPN cluster. Clusters that are active during execution of behavior A are highlighted and have strong output that enhances behavior A (green arrow) and suppresses competing behavior B (red brake). Lateral inhibition from the active clusters further limits activity of the other silent dSPN and iSPN clusters. (B) Basic connectivity of the lateral inhibition within and between the two functional units described. Note that all clusters receive excitatory inputs as well. For simplicity, all interneurons are not included in this early conceptual model. Neuron 2017 96, 267-284DOI: (10.1016/j.neuron.2017.09.019) Copyright © 2017 Terms and Conditions

Figure 5 Diverse Connectivity Patterns for the Lateral Inhibition Generate Diverse Firing Patterns Left: diagram of the connectivity pattern for the lateral inhibition within and between the two functional units. Right: raster plot output from a conductance-based model of SPNs showing the firing of action potentials in response to identical excitatory inputs for each SPN cluster (green for dSPN and red for iSPN clusters) for each functional unit (top raster for FU1, bottom raster for FU2). (A) No lateral connections between cells. (B) “All-to-all” connections between cells with equal synaptic strengths. (C) “All-to-all” connections between cells with asymmetrical connection strengths (iSPN > dSPN). (D) Proposed organization of lateral inhibition between and within units (“structured”) with equal connection strengths. (E) “Structured” connections between cells with asymmetrical connection strengths (iSPN > dSPN). Neuron 2017 96, 267-284DOI: (10.1016/j.neuron.2017.09.019) Copyright © 2017 Terms and Conditions