The structure and evolution of stars

Slides:



Advertisements
Similar presentations
Prof. D.C. Richardson Sections
Advertisements

Life as a Low-mass Star Image: Eagle Nebula in 3 wavebands (Kitt Peak 0.9 m).
Stellar Evolution. The Mass-Luminosity Relation Our goals for learning: How does a star’s mass affect nuclear fusion?
Chapter 17 Star Stuff.
Factors affecting Fusion Rate Density –Since protons are closer together, the mean free path between collisions will be smaller Temperature –At higher.
Asymptotic Giant Branch. Learning outcomes Evolution and internal structure of low mass stars from the core He burning phase to the tip of the AGB Nucleosynthesis.
Chapter 12 Stellar Evolution. Infrared Image of Helix Nebula.
Today: How a star changes while on the main sequence What happens when stars run out of hydrogen fuel Second stage of thermonuclear fusion Star clusters.
Susan CartwrightOur Evolving Universe1 The Lives of Stars n From studying nearby stars and stellar clusters l most stars are on the main sequence l stars.
Stellar Structure and evolution
The Lives of Stars Chapter 12. Life on Main-Sequence Zero-Age Main Sequence (ZAMS) –main sequence location where stars are born Bottom/left edge of main.
Chapter 21: Stars: From Adolescence to Old Age
Post Main Sequence Evolution PHYS390 (Astrophysics) Professor Lee Carkner Lecture 15.
The Formation and Structure of Stars Chapter 9. Stellar Models The structure and evolution of a star is determined by the laws of: Hydrostatic equilibrium.
Finally, fusion starts, stopping collapse: a star! Star reaches Main Sequence at end of Hayashi Track One cloud ( M Sun ) forms many stars,
Stellar Structure Section 6: Introduction to Stellar Evolution Lecture 16 – Evolution of core after S-C instability Formation of red giant Evolution up.
Stellar Evolution Astronomy 315 Professor Lee Carkner Lecture 13.
Lecture 15PHYS1005 – 2003/4 Lecture 16: Stellar Structure and Evolution – I Objectives: Understand energy transport in stars Examine their internal structure.
Astronomy 1 – Fall 2014 Lecture 12; November 18, 2014.
STELLAR EVOLUTION HR Diagram
Life Track After Main Sequence
The Death of a Low Mass Star n Evolution of a sun-like star post helium- flash –The star moves onto the horizontal branch of the Hertzprung-Russell diagram.
Age of M13: 14 billion years. Mass of stars leaving the main-sequence ~0.8 solar masses Main Sequence Sub- giants Giants Helium core- burning stars.
Stellar Evolution Beyond the Main Sequence. On the Main Sequence Hydrostatic Equilibrium Hydrogen to Helium in Core All sizes of stars do this After this,
Stellar Evolution: After the main Sequence Beyond hydrogen: The making of the elements.
Prelim Review.
1 The structure and evolution of stars Lecture 9: Computation of stellar evolutionary models.
1 The structure and evolution of stars Lecture 10: The evolution of 1M  mass stars.
Composition and Mass Loss. 2 Two of the major items which can affect stellar evolution are Composition: The most important variable is Y – the helium.
Chapter 17 Star Stuff.
A Star Becomes a Star 1)Stellar lifetime 2)Red Giant 3)White Dwarf 4)Supernova 5)More massive stars October 28, 2002.
Quiz #6 Most stars form in the spiral arms of galaxies Stars form in clusters, with all types of stars forming. O,B,A,F,G,K,M Spiral arms barely move,
The Red Giant Branch. L shell drives expansion L shell driven by M core - as |  |, |  T| increase outside contracting core shell narrows, also L core.
Units to cover: 62, 63, 64. Homework: Unit 60: Problems 12, 16, 18, 19 Unit 61 Problems 11, 12, 17, 18, 20 Unit 62 Problems 17, 18, 19 Unit 63, Problems.
The Sun in the Red Giant Phase (view from the Earth!)
The Lives and Deaths of Stars
Our Place in the Cosmos Lecture 12 Stellar Evolution.
Lecture L08 ASTB21 Stellar structure and evolution Prepared by Paula Ehlers and P. Artymowicz.
Stellar Lifecycles The process by which stars are formed and use up their fuel. What exactly happens to a star as it uses up its fuel is strongly dependent.
Lecture 16 Post-ms evolution. Overview: evolution.
© 2011 Pearson Education, Inc. We cannot observe a single star going through its whole life cycle; even short-lived stars live too long for that. Observation.
Universe Tenth Edition Chapter 19 Stellar Evolution: On and After the Main Sequence Roger Freedman Robert Geller William Kaufmann III.
Lives in the Balance Life as a Low Mass Star. Star mass categories: Low-mass stars: born with less than about 2 M Sun Intermediate-mass stars: born with.
Off the Main Sequence - The Evolution of a Sun-like Star Stages
© 2010 Pearson Education, Inc. Chapter 9 Stellar Lives and Deaths (Star Stuff)
CSI661/ASTR530 Spring, 2011 Chap. 2 An Overview of Stellar Evolution Feb. 23, 2011 Jie Zhang Copyright ©
From last class The ISM is not empty. In dense molecular clouds, stars begin to form. Star formation is governed by gravitational collapse. Thermal pressure.
Star Formation - 6 (Chapter 5 – Universe).
A Star is Born! Giant molecular clouds: consist of mostly H2 plus a small amount of other, more complex molecules Dense cores can begin to collapse under.
On the Main Sequence Behaviour of a main sequence star
© 2017 Pearson Education, Inc.
Contents of the Universe
How Stars Evolve Pressure and temperature The fate of the Sun
Annoucements Next test is in one week
Stellar Evolution Chapter 19.
Evolution off the Main Sequence
POST-MAIN SEQUENCE EVOLUTION
How Stars Evolve Pressure and temperature The fate of the Sun
Goals Explain why stars evolve Explain how stars of different masses evolve Describe two types of supernova Explain where the heavier elements come from.
Stellar Evolution: The Live and Death of a Star
Stellar evolution and star clusters
Homework #6: due Friday, March 23, 5pm
Stellar Structure and evolution
Stellar Evolution In post-Main-Sequence evolution, what you see on the surface is not a good indicator of what is happening deep in the interior.
Chapter 12 Stellar Evolution
Stars from Adolescence to Old Age
Chapter 13 Star Stuff.
Stellar Evolution.
Composition and Mass Loss
Presentation transcript:

The structure and evolution of stars Lecture 10: The evolution of 1M mass stars

Learning Outcomes The student will learn the standard ideas of the evolution of solar type stars, including theories and ideas of the Main-sequence The Subgiant phase The red giant branch The horizontal branch and red clump The AGB (asymptotic giant branch) Planetary nebula and WD

Example set of models - “the Geneva Group” See handout of paper of Schaller et al. (1992): the “standard” set of stellar evolutionary models form the Geneva group. 1st line in table NB = model number (51) AGE = age in yrs MASS = current mass LOGL = log L/L LOGTE = log Teff X,Y,C12…NE22 = surface abundance of H,He, 12C … 22Ne (these are mass fractions) 2nd line QCC = MDOT = mass loss rate: RHOC=central density LOGTC = log Tc X,Y,C12…NE22 = central abundances 

Schemactic picture of convective regions “Cloudy” areas indicate convective regions Solid lines show mass values for which radius is 0.25 and 0.5 of total radius Dashed lines show masses within which 0.5 and 0.9 of the luminosity is produced

The main-sequence phase See handouts for the distribution of mass, temperature, pressure and density for the young Sun at the age of 5.4 x 107 yrs (Böhm-Vitense p156, Table 13.1), and compare with the observed estimates now. For zero-age Sun Tc=13.62x106 ; current estimate Tc=15.6x107 K. Why ? During H-burning, 4H4He. After 50% of H has been transformed, number of particles has decreased by factor 0.73, if He was originally 10% (by number). What are the implications of this ? As core becomes hotter, slightly more energy is generated and the star’s luminosity increases. Tables show that since the Sun’s arrival on the main-sequence, it has become ~30% more luminous. Hence stars of a given mass but different ages populate the main-sequence with a width of ~0.5 dex.

The main-sequence phase The Sun on the main-sequence: Figures from Böhm-Vitense Ch. 13. 2% of mass is in heavy elements CNO cycle operates very slowly in central regions After ~4.5x109yr there is enough time to reach equilibrium abundances. N enriched by factor 7, C depleted by factor 200 Pressure increases steeply in centre 50% of mass is within radius 0.25R Only 1% of total mass is in the convection zone and above

H-exhaustion early evolution The cores of 1M stars become He rich. There is no convective processes required, hence the star does not become fully mixed. Fusion is most efficient in the centre, where T is highest. As He content increases, core shrinks and heats up  He rich core grows The T is not high enough for the triple- process H-burning continues in a shell around the core, and as T increases, the CNO process can occur in the shell As CNO T16 energy generation is concentrated in the regions of highest T and highest H content (in shell T ~ 20 x106 K) This high T causes high P outside the core and the H envelope expands. This expansion becomes more pronounced when >10% of the stellar mass in the He core. This early expansion terminates the main-sequence lifetime Luminosity remains approximately constant, hence Teff must decrease, star moves right along the red subgiant branch. Subgiant branch

The red-giant phase The shell source slowly burns, moving through the star, as the He core grows. But the star cannot expand and cool indefinitely. When the temperature of the outer layers reach <5000 K the envelopes become fully convective. This enables greater luminosity to be carried by the outer layers and hence quickly forces the star almost vertically in the HR diagram The star approaches the Hayashi line, and a small increase in the He core mass causes a relatively large expansion of the envelope. There is no physically simple, step by step explanation of how a star becomes a red giant. All numerical computations obtain red giant configurations. as solutions to the structure equations.

The He-flash and core He-burning The helium core does not reach threshold T for further burning as it ascends the RGB, and as it is not producing energy it continues to contract until it becomes degenerate. At tip of the RGB the e– in core are completely degenerate. P is due to degenerate e– pressure, which is independent of T. T is defined mainly by the energy distribution of the heavy particles (He nuclei). Remember gravitational collapse is resisted by e– degeneracy pressure. For T~108K, triple- reactions start in the very dense core. They generate energy, heating core, and KE of He nuclei increases, increasing the energy production. Energy generation and heating under degenerate conditions leads to runway - the He Flash

The He-flash and core He-burning During the He-flash, the core temperature changes within seconds. The rapid increase in T leads the e– again following Maxwell velocity distribution and degeneracy is removed. The pressure increases and core expands. The star finds a new equilibrium configuration with an expanded non-degenerate core which is hot enough to burn He. The H-burning shell source has also expanded, and has lower T and density and generates less energy than before. The star sits in the Red Clump (metal rich stars) or the Horizontal Branch (metal poor stars).

Globular clusters and the horizontal branch and 47 Tuc – Globular cluster Globular clusters are old and metal poor - we don’t see a red clump. We see a horizontal branch: H-burning shells, He burning cores Mass-loss drives bluewards evolution Lowest mass H-envelope stars are bluest More metal rich stars appear towards red Clump stars  extreme red end of HB Why do low metallicity stars end up on HB ? Why and how do they loose mass after He-flash, and metal rich stars do not ? Structure equations give equilibrium configurations on HB

The AGB and thermal pulses The triple- reaction is even more T-dependent ( T30), hence energy generation is even more centrally condensed. Note the H-burning shell is generating energy. The core will soon consist only of C+O, and in a similar way to before, the CO-core grows while a He-burning shell source develops. These two shell sources force expansion of the envelop and the star evolves up the red giant branch a second time - these is called the asymptotic giant branch. For high metallicity stars, the AGB coincides closely with the first RGB. For globulars (typical heavy element composition 100 times lower than solar) they appear separated.

The stellar wind and planetary nebula phase Large radiation pressure at tip of AGB probably drives mass-loss. Particles may absorb photons from radiation field and be accelerated out of the gravitational potential well. Observations of red giants and supergiants (more massive evolved stars) are in the range 10-9 to 10-4 M yr-1 Mass-loss is generally classified into two types of wind. Stellar wind: described by empirical formula (Dieter Reimers), linking mass, radius, luminosity with simple relation and a constant from observations. Typical wind rates are of order 10-6 M yr-1 A superwind: a stronger wind, leading to stellar ejecta observable in shell surrounding central star

The existence of a superwind is suggested by two independent variables The existence of a superwind is suggested by two independent variables. The high density observed within the observed shells in stellar ejecta, and relative paucity of very bright stars on the AGB. The latter (Prialnik P. 161) comes from the number of AGB stars expected compared to observed is >10. Hence a process prevents them completing their movement up the AGB, while losing mass at the Reimer’s rate. This is a superwind which removes the envelope mass before the core has grown to it’s maximal possible size. Direct observations of some stars indicate mass-loss rates of order 10-6 M yr-1 . Probably this is due to pulsational instability and thermal pulses in envelope e.g. Mira type variables. Superwind causes envelope ejection. The cores evolve into C-O white dwarfs (see Lecture 12). Core mass at tip of AGB ~0.6 M and most white dwarfs have masses close to this.

Summary of 1 M evolution Approximate typical timescales Phase  (yrs) Main-sequence 9 x109 Subgiant 3 x109 Redgiant Branch 1 x109 Red clump 1 x 108 AGB evolution ~5x106 PNe ~1x105 WD cooling >8x109 Full AGB models : Vassiliadis & Wood 1993, ApJ, 413, 641

Summary of 1 M evolution