Module 6-2 Objective Solve systems of linear equations in two variables by substitution.

Slides:



Advertisements
Similar presentations
Solving Systems by Substitution
Advertisements

Warm Up Evaluate each expression for x = 1 and y =–3.
Warm Up Solve each equation for x. 1. y = x y = 3x – 4
Solve an equation with variables on both sides
SOLVING SYSTEMS USING SUBSTITUTION
Solve an equation using subtraction EXAMPLE 1 Solve x + 7 = 4. x + 7 = 4x + 7 = 4 Write original equation. x + 7 – 7 = 4 – 7 Use subtraction property of.
Standardized Test Practice
Warm Up Solve each equation for x. 1. y = x y = 3x – 4
 Solve one of the equations for one of the variables.  Isolate one of the variables in one of the equations.  Choose whichever seems easiest.  Substitute.
Warm Up Solve each equation for x. 1. y = x y = 3x – 4
Systems of Equations 7-4 Learn to solve systems of equations.
Holt Algebra Solving Linear Equations and Inequalities Section 2.1 Solving Linear Equations and Inequalities.
Do Now (3x + y) – (2x + y) 4(2x + 3y) – (8x – y)
Solve an equation using addition EXAMPLE 2 Solve x – 12 = 3. Horizontal format Vertical format x– 12 = 3 Write original equation. x – 12 = 3 Add 12 to.
Example 1 Solving Two-Step Equations SOLUTION a. 12x2x + 5 = Write original equation. 112x2x + – = 15 – Subtract 1 from each side. (Subtraction property.
Solving Linear Equations Substitution. Find the common solution for the system y = 3x + 1 y = x + 5 There are 4 steps to this process Step 1:Substitute.
Copyright © Cengage Learning. All rights reserved. Systems of Linear Equations and Inequalities in Two Variables 7.
Systems of Equations: Substitution
Use the substitution method
6-2 Solving Systems by Substitution Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
CHAPTER SOLVING SYSTEMS BY SUBSTITUTION. OBJECTIVES  Solve systems of linear equations in two variables by substitution.
Solving Systems by Substitution
Solve Linear Systems by Substitution January 28, 2014 Pages
Solve Linear Systems by Substitution Students will solve systems of linear equations by substitution. Students will do assigned homework. Students will.
6-5 Applying Systems Additional Example 2: Solving Mixture Problems A chemist mixes a 20% saline solution and a 40% saline solution to get 60 milliliters.
6-2Solving Systems by Substitution Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
6-2 Solving Systems Using Substitution Hubarth Algebra.
Solving Equations with Variables on Both Sides. Review O Suppose you want to solve -4m m = -3 What would you do as your first step? Explain.
Holt Algebra Solving Systems by Substitution Solve linear equations in two variables by substitution. Objective.
Substitution Method: Solve the linear system. Y = 3x + 2 Equation 1 x + 2y=11 Equation 2.
Solving Systems of Equations
Rewrite a linear equation
Warm Up 2x – 10 9 – 3x 12 9 Solve each equation for x. 1. y = x + 3
SOLVING SYSTEMS OF EQUATIONS
Example: Solve the equation. Multiply both sides by 5. Simplify both sides. Add –3y to both sides. Simplify both sides. Add –30 to both sides. Simplify.
Objective Solve linear equations in two variables by substitution.
2 Understanding Variables and Solving Equations.
Solving Systems Using Substitution
Warm Up Simplify each expression. 1. 3x + 2y – 5x – 2y
3-2: Solving Systems of Equations using Substitution
6-2 Solving Systems By Using Substitution
6-2 Solving Systems Using Substitution
Solving Systems using Substitution
Solve a system of linear equation in two variables
3-2: Solving Systems of Equations using Substitution
Lesson 5-2 Solving Systems by Substitution
Solving Systems of Equations using Substitution
Before: November 28, 2017 Solve each system by graphing. 1. y = 2x – 1
3-2: Solving Systems of Equations using Substitution
Solve an equation by combining like terms
Objectives Solve systems of linear equations in two variables by elimination. Compare and choose an appropriate method for solving systems of linear equations.
Solving Multi-Step Equations
Solving Systems by Substitution
12 Systems of Linear Equations and Inequalities.
Solving Multi-Step Equations
Objective Solve linear equations in two variables by substitution.
What is the difference between simplifying and solving?
Solving Systems by Substitution
Solving Multi-Step Equations
3-2: Solving Systems of Equations using Substitution
Warm Up Solve each equation for x. 1. y = x y = 3x – 4
Warm Up Solve each equation for x. 1. y = x y = 3x – 4
Example 2B: Solving Linear Systems by Elimination
Warm Up Solve each equation for x. 1. y = x y = 3x – 4
3-2: Solving Systems of Equations using Substitution
3-2: Solving Systems of Equations using Substitution
3-2: Solving Systems of Equations using Substitution
3-2: Solving Systems of Equations using Substitution
Presentation transcript:

Module 6-2 Objective Solve systems of linear equations in two variables by substitution.

Sometimes it is difficult to identify the exact solution to a system by graphing. In this case, you can use a method called substitution. The goal when using substitution is to reduce the system to one equation that has only one variable. Then you can solve this equation by the methods taught earlier this unit.

Solving Systems of Equations by Substitution Step 2 Step 3 Step 4 Step 5 Solve for one variable in at least one equation, if necessary. Step 1 Substitute the resulting expression into the other equation. Solve that equation to get the value of the first variable. Substitute that value into one of the original equations and solve. Write the values from steps 3 and 4 as an ordered pair, (x, y), and check.

Example 1A: Solving a System of Linear Equations by Substitution Solve the system by substitution. y = 3x y = x – 2 Step 1 y = 3x Both equations are solved for y. y = x – 2 Step 2 y = x – 2 3x = x – 2 Substitute 3x for y in the second equation. Step 3 –x –x 2x = –2 2x = –2 2 2 x = –1 Solve for x. Subtract x from both sides and then divide by 2.

  Example 1A Continued Solve the system by substitution. Write one of the original equations. Step 4 y = 3x y = 3(–1) y = –3 Substitute –1 for x. Write the solution as an ordered pair. Step 5 (–1, –3) Check Substitute (–1, –3) into both equations in the system. y = 3x –3 3(–1) –3 –3  y = x – 2 –3 –1 – 2 –3 –3 

Example 1B: Solving a System of Linear Equations by Substitution Solve the system by substitution. y = x + 1 4x + y = 6 The first equation is solved for y. Step 1 y = x + 1 Step 2 4x + y = 6 4x + (x + 1) = 6 Substitute x + 1 for y in the second equation. 5x + 1 = 6 Simplify. Solve for x. Step 3 –1 –1 5x = 5 5 5 x = 1 5x = 5 Subtract 1 from both sides. Divide both sides by 5.

  Example1B Continued Solve the system by substitution. Write one of the original equations. Step 4 y = x + 1 y = 1 + 1 y = 2 Substitute 1 for x. Write the solution as an ordered pair. Step 5 (1, 2) Check Substitute (1, 2) into both equations in the system. y = x + 1 2 1 + 1 2 2  4x + y = 6 4(1) + 2 6 6 6 

Example 1C: Solving a System of Linear Equations by Substitution Solve the system by substitution. x + 2y = –1 x – y = 5 Step 1 x + 2y = –1 Solve the first equation for x by subtracting 2y from both sides. −2y −2y x = –2y – 1 Step 2 x – y = 5 (–2y – 1) – y = 5 Substitute –2y – 1 for x in the second equation. –3y – 1 = 5 Simplify.

Example 1C Continued Step 3 –3y – 1 = 5 Solve for y. +1 +1 –3y = 6 Add 1 to both sides. –3y = 6 –3 –3 y = –2 Divide both sides by –3. Step 4 x – y = 5 Write one of the original equations. x – (–2) = 5 x + 2 = 5 Substitute –2 for y. –2 –2 x = 3 Subtract 2 from both sides. Write the solution as an ordered pair. Step 5 (3, –2)

When you solve one equation for a variable, you must substitute the value or expression into the other original equation, not the one that had just been solved. Caution

Example 2: Using the Distributive Property y + 6x = 11 Solve by substitution. 3x + 2y = –5 Solve the first equation for y by subtracting 6x from each side. Step 1 y + 6x = 11 – 6x – 6x y = –6x + 11 3x + 2(–6x + 11) = –5 3x + 2y = –5 Step 2 Substitute –6x + 11 for y in the second equation. Distribute 2 to the expression in parentheses. 3x + 2(–6x + 11) = –5

Example 2 Continued y + 6x = 11 Solve by substitution. 3x + 2y = –5 Step 3 3x + 2(–6x) + 2(11) = –5 Simplify. Solve for x. 3x – 12x + 22 = –5 –9x + 22 = –5 –9x = –27 – 22 –22 Subtract 22 from both sides. –9x = –27 –9 –9 Divide both sides by –9. x = 3

Example 2 Continued y + 6x = 11 Solve by substitution. 3x + 2y = –5 Write one of the original equations. Step 4 y + 6x = 11 y + 6(3) = 11 Substitute 3 for x. y + 18 = 11 Simplify. –18 –18 y = –7 Subtract 18 from each side. Step 5 (3, –7) Write the solution as an ordered pair.

Example 3: Consumer Economics Application Jenna is deciding between two cell-phone plans. The first plan has a $50 sign-up fee and costs $20 per month. The second plan has a $30 sign-up fee and costs $25 per month. After how many months will the total costs be the same? What will the costs be? If Jenna has to sign a one-year contract, which plan will be cheaper? Explain. Write an equation for each option. Let t represent the total amount paid and m represent the number of months.

Example 3 Continued Total paid sign-up fee payment amount for each month. is plus Option 1 t = $50 + $20 m Option 2 t = $30 + $25 m Step 1 t = 50 + 20m t = 30 + 25m Both equations are solved for t. Step 2 50 + 20m = 30 + 25m Substitute 50 + 20m for t in the second equation.

Example 3 Continued Step 3 50 + 20m = 30 + 25m Solve for m. Subtract 20m from both sides. –20m – 20m 50 = 30 + 5m Subtract 30 from both sides. –30 –30 20 = 5m Divide both sides by 5. 5 5 m = 4 20 = 5m Step 4 t = 30 + 25m Write one of the original equations. t = 30 + 25(4) Substitute 4 for m. t = 30 + 100 t = 130 Simplify.

Example 3 Continued Write the solution as an ordered pair. Step 5 (4, 130) In 4 months, the total cost for each option would be the same $130. If Jenna has to sign a one-year contract, which plan will be cheaper? Explain. Option 1: t = 50 + 20(12) = 290 Option 2: t = 30 + 25(12) = 330 Jenna should choose the first plan because it costs $290 for the year and the second plan costs $330.

Tonight’s HW: p. 144 #9-25 odds