and analysis of hyperfine structure from four quadrupolar nuclei

Slides:



Advertisements
Similar presentations
68th OSU International Symposium on Molecular Spectroscopy TH08
Advertisements

Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
MICROWAVE SPECTRUM AND AB INITIO CALCULATIONS OF meta-CHLOROBENZALDEHYDE Sean Arnold, Jessica Garrett, & Dr. Gordon Brown Department of Science and Mathematics.
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
THE CONFORMATIONAL BEHAVIOUR OF GLUCOSAMINE I. PEÑA, L. KOLESNIKOVÁ, C. CABEZAS, C. BERMÚDEZ, M. BERDAKIN, A. SIMAO, J.L. ALONSO Grupo de Espectroscopia.
Laboratory characterization and astrophysical detection in Orion KL of higher excited states of vinyl cyanide Alicia Lopez, a Belen Tercero, a Jose Cernicharo,
Global analysis of broadband rotation and vibration-rotation spectra of sulfur dicyanide Zbigniew Kisiel, a Manfred Winnewisser, b Brenda P. Winnewisser,
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
VADIM L. STAKHURSKY *, LILY ZU †, JINJUN LIU, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th.
60th OSU International Symposium on Molecular Spectroscopy TF03 The millimeter-wave rotational spectrum of lactic acid Zbigniew Kisiel, Ewa Białkowska-Jaworska,
65th OSU International Symposium on Molecular Spectroscopy RH14.
The complete molecular geometry of salicyl aldehyde from rotational spectroscopy Orest Dorosh, Ewa Białkowska-Jaworska, Zbigniew Kisiel, Lech Pszczółkowski,
Water clusters observed by chirped-pulse rotational spectroscopy: Structures and hydrogen bonding Cristobal Perez, Matt T. Muckle, Daniel P. Zaleski, Nathan.
Structures of the cage, prism and book hexamer water clusters from multiple isotopic substitution Simon Lobsiger, Cristobal Perez, Daniel P. Zaleski, Nathan.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
Fitting the high-resolution spectroscopic data for NCNCS Zbigniew Kisiel, a Brenda P. Winnewisser, b Manfred Winnewisser, b Frank C. De Lucia, b Dennis.
Zeinab. T. Dehghani, A. Mizoguchi, H. Kanamori Department of Physics, Tokyo Institute of Technology Millimeter-Wave Spectroscopy of S 2 Cl 2 : A Candidate.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
The rotational spectrum of chlorine nitrate (ClONO 2 ): 6 and the 5 / 6 9 dyad Zbigniew Kisiel, Ewa Białkowska-Jaworska Institute of Physics, Polish Academy.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
Rotational spectroscopy of ethylamine into the THz Zbigniew Kisiel, Adam Kraśnicki Institute of Physics, Polish Academy of Sciences Ivan R. Medvedev, Christopher.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di.
Perturbations and vibrational energies in acrylonitrile from global analysis of its mm-wave to THz rotational spectrum Zbigniew Kisiel, a Lech Pszczółkowski,
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
Atusko Maeda, Ivan Medvedev, Eric Herbst,
Analysis of interactions between excited vibrational states in the FASSST rotational spectrum of S(CN) 2 Zbigniew Kisiel, Orest Dorosh Institute of Physics,
HIGH RESOLUTION SPECTROSCOPY OF THE TWO LOWEST VIBRATIONAL STATES OF QUINOLINE C 9 H 7 N O. PIRALI, Z. KISIEL, M. GOUBET, S. GRUET, M.-A. MARTIN-DRUMEL,
Accurate Equilibrium Structures of Piperidine and Cyclohexane JEAN DEMAISON, Laboratoire de Physique de Lasers, Atomes et Molécules, Université de Lille.
Towards understanding quantum monodromy in quasi-symmetric molecules: FASSST rotational spectra of CH 3 NCO and CH 3 NCS Zbigniew Kisiel, a Sarah Fortman,
Rotational spectroscopy of newly detected atmospheric ozone depleters: CF 3 CH 2 Cl, CF 3 CCl 3, and CFClCCl 3 Zbigniew Kisiel, Ewa Białkowska-Jaworska,
A b (+c)(+c) cbacbaz acbbacy bacacbx III l IIlIIl IlIl III r IIrIIr IrIr ~ y~ y ~ x~ x Rotational spectrum of FCO 2 molecule with resolved fs and hfs in.
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
The rotational spectrum of acrylonitrile to 1.67 THz Zbigniew Kisiel, Lech Pszczółkowski Institute of Physics, Polish Academy of Sciences Brian J. Drouin,
Laboratory of Millimetre-wave Spectroscopy of Bologna The ROTATIONAL SPECTRUM of HDO : ACCURATE SPECTROSCOPIC and HYPERFINE PARAMETERS G. Cazzoli*, V.
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
The complete rotational spectrum of CH 3 NCO up to 376 GHz Zbigniew Kisiel, a Lucie Kolesnikova, b Jose L. Alonso, b Ivan R. Medvedev, c Sarah Fortman,
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
Rotational Spectra of N 2 O-H 2 Complexes University of Alberta Jen Nicole Landry and Wolfgang Jäger June 23, 2005.
Analysis of the FASSST rotational spectrum of S(CN) 2 Zbigniew Kisiel, Orest Dorosh Institute of Physics, Polish Academy of Sciences Ivan R. Medvedev,
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Further analysis of the laboratory rotational spectrum of CH3NCO
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
IN THE GAS PHASE AND IN SOLUTION
Microwave and infrared spectra of urethane
60th OSU International Symposium on Molecular Spectroscopy TA03
Characterisation and Control of Cold Chiral Compounds
63rd OSU International Symposium on Molecular Spectroscopy FC01
Carlos Cabezas and Yasuki Endo
The CP-FTMW Spectrum of Bromoperfluoroacetone
The lowest vibrational states of urea from the rotational spectrum
Chirped pulse rotational spectroscopy
Becca Mackenzie Chris Dewberry, Ken Leopold
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
Vibrational energies for acrylonitrile from
Angela Y. Chung, Eric A. Arsenault, and Stewart E. Novick
62nd OSU International Symposium on Molecular Spectroscopy WG10
Lowest vibrational states of acrylonitrile
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

and analysis of hyperfine structure from four quadrupolar nuclei 71st International Symposium on Molecular Spectroscopy WE06 Rotational spectroscopy of CF2ClCCl3 and analysis of hyperfine structure from four quadrupolar nuclei Zbigniew Kisiel, Ewa Białkowska-Jaworska, Lech Pszczółkowski, Institute of Physics, Polish Academy of Sciences, Warszawa, Poland Iciar Uriarte, Francisco J. Basterretxea, Emilio J. Cocinero Departamento de Quimica Fisica, Universidad del Pais Vasco, (UPV-EHU), Bilbao, Spain

Johannes C. Laube et al., Praha2008 Analysis of 1978-2012 air samples from Tasmania + Analysis of air bubbles in Greenland snow Four previously undetected ozone-depleting substances identified: CFC-112 = CFCl2CFCl2 CFC-112a = CF2ClCCl3 CFC-113a = CF3CCl3 HCFC-133a = CF3CH2Cl CFC-112a = CF2ClCCl3 has not yet been studied by rotational spectroscopy (small  , b-type spectrum and 4Cl)

The chirped-pulse rotational spectrum of CF2ClCCl3: Praha2008 CFC-112a  parent 551  440 550  441 transition region Cl2 Cl1 Cl3 Initial A,B,C determined

Hyperfine structure (4 chlorine nuclei): Praha2008 CFC-112a 441  330 440  331 Obs. 3 asymmetric rotor quantum numbers + 4 spin quantum numbers = 7: Fortunately symmetric top quantisation allows using 2 + 4 = 6 quanta First prediction

Praha2008 Predictions: Accurate predictions of hyperfine structure are the key to success. There are several possibilities: Use the W.C.Bailey approach: ab initio calculation at equilibrium geometry with extended basis set tailored to the specific quadrupolar nucleus, see: http://nqcc.wcbailey.net/ Use general scaling coefficients: see Białkowska-Jaworska et al., J.Mol. Spectrosc. 238, 72 (2006) Use specific scaling based on related molecules: H-CCl3, H3C-CCl3, NC-CCl3 SPFIT/SPCAT package is the tool of choice, but the standard (32-bit) compilation runs into „Memory allocation error” for this molecule (Hamiltonian sizes > 7800). 64-bit executables for Windows and Linux are now available on the PROSPE website: http://info.ifpan.edu.pl/~kisiel/asym/asym.htm#64bit

Chirped pulse identification allowed making F-P scans: Praha2008 Chirped pulse identification allowed making F-P scans: 431  322 Chirped pulse FWHH  90 kHz FWHH  18 kHz Cavity

F-P scans allowed assignment: Praha2008 Pattern matching becomes possible 441  330 440  331 Obs. transition in the fit Calc.

And in more detail: 441  330 440  331 Obs. Calc. Praha2008 And in more detail: 441  330 440  331 Obs. Complex blends are avoided and only clear transitions picked out for analysis Calc.

Also for the 431  322 transition: Praha2008 Also for the 431  322 transition: Obs. Calc.

And in more detail: Obs. 431  322 Calc. Settable frequency marker Praha2008 And in more detail: Obs. 431  322 Settable frequency marker (V and ^V in ASCP_L) Calc.

Rotational and centrifugal constants: Praha2008 Rotational and centrifugal constants: --------------------------------------------------------------------- chirped/ASFIT cavity/SPFIT MP2/aug-cc-pVTZ A /MHz 1236.833(32) 1236.843683(84) 1235.9 B /MHz 921.278(63) 921.25227(10) 925.3 C /MHz 878.234(31) 878.23725(10) 882.2 DJ /kHz [ 0.0363 ] 0.0344(27) DJK /kHz [ 0.0187 ] [ 0.0187 ] DK /kHz [-0.00804] [-0.00803] dJ /kHz [ 0.00252] [ 0.00252] dK /kHz [ 0.0340 ] [ 0.0340 ] Nlines 19 301 Ntrans 19 15 sigma /kHz 862. 2.316 rms 0.8621 1.158 The number of different measured frequencies The number of different rotational transitions

Nuclear quadrupole coupling constants: Praha2008 ------------------------------------------------------------- predicted experimental scaled Bailey SPFIT Cl1 = in-plane Cl in the CCl3 group: 1.5Xaa /MHz -39.02 -38.75 -37.4695(66) (Xbb-Xcc)/4 /MHz -14.59 -14.71 -14.8246(22) Xab /MHz -61.11 61.63 -61.50(12) Cl2 = out-of-plane Cl in the CCl3 group: 1.5Xaa /MHz 59.87 60.74 59.9635(37) (Xbb-Xcc)/4 /MHz 10.91 11.08 10.93725(84) Xab /MHz 5.94 5.55 6.307(80) Xac /MHz 7.12 6.83 7.70(19) Xbc /MHz -57.33 -57.72 -57.4297(43) Cl3 = in-plane Cl in the CF2Cl group: 1.5Xaa /MHz -53.01 -53.51 -52.5314(64) (Xbb-Xcc)/4 /MHz -10.63 -10.77 -10.8393(24) Xab /MHz -54.56 55.54 -55.37(12) Average prediction accuracy: scaled 2.2 % Bailey 3.1 %

 Principal nuclear quadrupole tensors: aa ab ac za zz 0 0 Praha2008 Principal nuclear quadrupole tensors: aa ab ac ab bb bc ac bc cc zz 0 0 0 xx 0 0 0 yy   = (xx - yy)/zz za QDIAG zz = - 82.69(12) MHz  = 0.0192(15) zz = - 82.25(3) MHz  = 0.0216(21) zz = - 77.07(12) MHz  = 0.0169(15) H-CCl3 zz = - 78.688(18) MHz F-CC-Cl zz = - 83.0(1) MHz H3C-CCl3 zz = - 78.218(14) MHz

Praha2008 CONCLUSIONS: Assigning completely resolved quadruple quadrupolar problems is possible but accurate prediction is the key to success Suitable combination of supersonic expansion techniques was important for CFC-112a : initial assignment with chirped pulse and follow up measurements with the cavity The hyperfine information for CF2ClCCl3 allows interesting comparisons with other molecules such as related triple-chlorine molecules CHCl3, CH3CCl3 and with chloro-fluoro species The hyperfine angles za provide useful additional information for structure determination The CFC-112a molecule has been „tamed”: basic high resolution spectroscopic constants have been determined