CS222P: Principles of Data Management Lecture #5: Schema Versioning

Slides:



Advertisements
Similar presentations
Database Modifications CIS 4301 Lecture Notes Lecture /30/2006.
Advertisements

Some Introductory Programming 1. Structured Query Language (SQL) - used for queries. - a standard database product. 2. Visual Basic for Applications -
Dec 4, 2003Murali Mani SQL B term 2004: lecture 14.
SQL components In Oracle. SQL in Oracle SQL is made up of 4 components: –DDL Data Definition Language CREATE, ALTER, DROP, TRUNCATE. Creates / Alters.
SQL SQL stands for Structured Query Language SQL allows you to access a database SQL is an ANSI standard computer language SQL can execute queries against.
Chapter 4 Relational Databases Copyright © 2012 Pearson Education, Inc. publishing as Prentice Hall 4-1.
1 times table 2 times table 3 times table 4 times table 5 times table
Chapter 4 Relational Databases Copyright © 2012 Pearson Education 4-1.
Functional Dependencies
Data Warehouse Student Data User Group Meeting 1/29/2015.
Information Systems: Databases Define the role of general information systems Describe the elements of a database management system (DBMS) Describe the.
Constraints  Constraints are used to enforce rules at table level.  Constraints prevent the deletion of a table if there is dependencies.  The following.
Object Persistence (Data Base) Design Chapter 13.
1 Structured Query Language (SQL). 2 Contents SQL – I SQL – II SQL – III SQL – IV.
What have we learned?. What is a database? An organized collection of related data.
603 Database Systems Senior Lecturer: Laurie Webster II, M.S.S.E.,M.S.E.E., M.S.BME, Ph.D., P.E. Lecture 17 A First Course in Database Systems.
SE305 Database System Technology 23/10/2014 Quiz-2.
File and Database Design Class 22. File and database design: 1. Choosing the storage format for each attribute from the logical data model. 2. Grouping.
EXPerience Access XP Access XP Preparation for the Microsoft Office Specialist Certification eXPerience By: Professor Corinne Hoisington.
Understand Tables and How to Create Them Database Administration Fundamentals LESSON 2.2.
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
Relational Database Management System(RDBMS) Structured Query Language(SQL)
Tables Learning Support
Hoi Le. Why database? Spreadsheet is not good to: Store very large information Efficiently update data Use in multi-user mode Hoi Le2.
Understand Data Definition Language (DDL) Database Administration Fundamentals LESSON 1.4.
 MySQL  DDL ◦ Create ◦ Alter  DML ◦ Insert ◦ Select ◦ Update ◦ Delete  DDL(again) ◦ Drop ◦ Truncate.
1 CS122A: Introduction to Data Management Lecture #4 (E-R  Relational Translation) Instructor: Chen Li.
DEVRY CIS 336 W EEK 5 G ROUP P ROJECT T ASK 3 Check this A+ tutorial guideline at
Insert, Update and the rest…
CS 480: Database Systems Lecture 13 February 13,2013.
Chapter 12 Information Systems.
CIS 207 The Relational Database Model
Table Amortized cost: $3 Insert 5 Actual cost: $1.
CS222P: Principles of Data Management Lecture #15 Query Optimization (System-R) Instructor: Chen Li.
Chapter 4 Relational Databases
Times Tables.
CPSC-310 Database Systems
Structured Query Language (Data definition Language)
DBS201: More on SQL Lecture 2.
CS222P: Principles of Data Management Notes #6 Index Overview and ISAM Tree Index Instructor: Chen Li.
CS222P: Principles of Data Management Lecture #2 Heap Files, Page structure, Record formats Instructor: Chen Li.
Workbench Data Definition Language (DDL)
CS222P: Principles of Data Management Notes #11 Selection, Projection
بسم الله الرحمن الرحيم الموضوع:الوضوء صفته وفرائضه وسننه
CS222P: Principles of Data Management Notes #8 Static Hashing, Extendible Hashing, Linear Hashing Instructor: Chen Li.
مقدمة في قواعد البيانات
CS222/CS122C: Principles of Data Management Lecture #4 Catalogs, File Organizations Instructor: Chen Li.
This allows me to insert data for specified fields and not for other fields in the structure.
Database Management System
How to create query table with computation
Creating and Managing Database Tables
Click on Save All to save everything and choose a location etc
CS222/CS122C: Principles of Data Management Lecture #2 Storing Data: Disks and Files Instructor: Chen Li.
CS222p: Principles of Data Management Lecture #4 Catalogs, File Organizations Instructor: Chen Li.
Instructor: Chen Li Irvine Fall 2017
CS222: Principles of Data Management Notes #11 Selection, Projection
Charles Severance Single Table SQL.
Introduction to Database Systems CSE 444 Lectures 19: Data Storage and Indexes May 16, 2008.
Instructor: Chen Li Irvine Fall 2017
GIS Lecture: Data Tables
CPSC-608 Database Systems
3 times tables.
6 times tables.
ETL Processing Mechanics of ETL.
CS222/CS122C: Principles of Data Management UCI, Fall 2018 Notes #14 Open Topics and Wrap up Instructor: Chen Li.
CS222/CS122C: Principles of Data Management UCI, Fall 2018 Lecture #2 Storing Data: Record/Page Formats Instructor: Chen Li.
CS222/CS122C: Principles of Data Management UCI, Fall 2018 Notes #04 Schema versioning and File organizations Instructor: Chen Li.
CS222/CS122C: Principles of Data Management UCI, Fall 2018 Notes #10 Selection, Projection Instructor: Chen Li.
SQL NOT NULL Constraint
CS222P: Principles of Data Management UCI, Fall 2018 Notes #04 Schema versioning and File organizations Instructor: Chen Li.
Presentation transcript:

CS222P: Principles of Data Management Lecture #5: Schema Versioning Instructor: Chen Li

Schema Versioning How to handle existing records when the schema is changed? Scheme versioning technique adds the version of the schema to each record All versions of the schema are kept in the catalog When the schema changes, create a new schema version Records are interpreted based on it’s schema version and current schema during a query Version Schema 1 A, B, C 2 A, B, C, D 3 A, B, D Record Version a1, b1, c1 1 a2, b2, c2 a3, b3, c3, d3 2 a4, b4, d4 3 Table Catalog 18

Example Create table R(A, B, C) Insert 1 million records All records are with schema version 1 Add attribute D Create new schema version 2 Insert 10 records 10 records are with schema version 2 Select * from R records with version 1 are padded with null for field D Drop attribute D Create new schema version 3 field D are truncated from records with version 2