Medians and Altitudes.

Slides:



Advertisements
Similar presentations
 bisector m  BAE  m  EAC  bisect AD = BD, AD  DG, BD  DG  bisector m  ABG  m  GBC 16. (-2.5, 7)25.
Advertisements

Medians and Altitudes 5-3 of Triangles Section 5.3
 Definition:  A line that passes through the midpoint of the side of a triangle and is perpendicular to that side.
5-3 Concurrent Lines, Medians, Altitudes
Medians and Altitudes 5-4 of Triangles Warm Up Lesson Presentation
Warm Up 1. What is the name of the point where the angle bisectors of a triangle intersect? Find the midpoint of the segment with the given endpoints.
Lesson 5-1 Bisectors, Medians and Altitudes. Objectives Identify and use perpendicular bisectors and angle bisectors in triangles Identify and use medians.
5-3 Medians and Altitudes of triangles
5.3 - Concurrent Lines, Medians, and Altitudes
Chapter 5.3 Concurrent Lines, Medians, and Altitudes
Objectives To define, draw, and list characteristics of: Midsegments
Holt Geometry 5-3 Medians and Altitudes of Triangles Warm Up 1. What is the name of the point where the angle bisectors of a triangle intersect? Find the.
Warm-Up Find the area of each triangle
Median and Altitude of a Triangle Sec 5.3
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Lesson 12 – Points of Concurrency II
5.4 Medians and Altitudes A median of a triangle is a segment whose endpoints are a vertex and the midpoint of the opposite side. –A triangle’s three medians.
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Geometry B POINTS OF CONCURRENCY. The intersection of the perpendicular bisectors. CIRCUMCENTER.
Points of Concurrency The point where three or more lines intersect.
5.3: Concurrent Lines, Medians and Altitudes Objectives: Students will be able to… Identify properties of perpendicular bisectors and angle bisectors Identify.
Holt Geometry Medians and Altitudes of Triangles Entry Task 1. How do you multiply fractions? What is 2/3 * 1/5? Find the midpoint of the segment with.
Math 1 Warm-ups Fire stations are located at A and B. XY , which contains Havens Road, represents the perpendicular bisector of AB . A fire.
Homework Quiz. Warmup Need Graph Paper/Compass 5.3 Concurrent Lines, Medians, and Altitudes.
5.3 Medians and Altitudes CentroidOrthocenter. Definition of a Median A median is a segment from a vertex of a triangle to the midpoint of its opposite.
5-3: Medians and Altitudes (p. 10). Apply properties of medians of a triangle. Apply properties of altitudes of a triangle. Objectives: 5-3: Medians and.
 TEKS Focus:  (6)(D) Verify theorems about the relationships in triangles, including proof of the Pythagorean Theorem, the sum of interior angles, base.
Holt Geometry 5-3 Medians and Altitudes of Triangles Warm Up 1. What is the name of the point where the angle bisectors of a triangle intersect? Find the.
Holt McDougal Geometry 5-3 Medians and Altitudes of Triangles 5-3 Medians and Altitudes of Triangles Holt Geometry Warm Up Warm Up Lesson Presentation.
Section 5-3 Medians and Altitudes of Triangles. A median of a triangle is a segment whose endpoints are a vertex of the triangle and the midpoint of the.
Medians, and Altitudes. When three or more lines intersect in one point, they are concurrent. The point at which they intersect is the point of concurrency.
Holt Geometry 5-3 Medians and Altitudes of Triangles 5-3 Medians and Altitudes of Triangles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
Objectives Apply properties of medians and altitudes of a triangle.
Warm Up 1. What is the name of the point where the angle bisectors of a triangle intersect? Find the midpoint of the segment with the given endpoints.
5-4 Medians and Altitudes
Medians and Altitudes 5-2 of Triangles Warm Up Lesson Presentation
Medians and Altitudes 5.3.
Triangle Centers Points of Concurrency
Vocabulary and Examples
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Warm Up 1. What is the name of the point where the angle bisectors of a triangle intersect? incenter.
Warm Up 1. Draw a triangle and construct the bisector of one angle.
5.4 Use Medians and Altitudes
5-4 Medians and Altitudes
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
8.3 Medians and Altitudes of Triangles
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Points of Concurrency Lessons
Learning Target will be able to: Apply properties of medians of a triangle and apply properties of altitudes of a triangle.
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Class Greeting.
Every triangle has three medians, and the medians are concurrent.
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Vocabulary median of a triangle centroid of a triangle
Objectives Apply properties of medians of a triangle.
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Bisectors of a Triangle
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Warm Up– in your notebook
Properties of Triangles
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Medians and Altitudes of Triangles Warm Up Lesson Presentation
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Learning Target I can: Apply properties of medians of a triangle and apply properties of altitudes of a triangle.
concurrency that we will be discussing today.
Presentation transcript:

Medians and Altitudes

A median of a triangle is a segment whose endpoints are a vertex of the triangle and the midpoint of the opposite side. Every triangle has three medians, and the medians are concurrent.

The point of concurrency of the medians of a triangle is the centroid of the triangle . The centroid is always inside the triangle. The centroid is also called the center of gravity because it is the point where a triangular region will balance.

Example: Using the Centroid to Find Segment Lengths In ∆LMN, RL = 21 and SQ =4. Find LS. Centroid Thm. Substitute 21 for RL. LS = 14 Simplify.

Example: Using the Centroid to Find Segment Lengths In ∆LMN, RL = 21 and SQ =4. Find NQ. Centroid Thm. NS + SQ = NQ Seg. Add. Post. Substitute NQ for NS. Subtract from both sides. Substitute 4 for SQ. 12 = NQ Multiply both sides by 3.

An altitude of a triangle is a perpendicular segment from a vertex to the line containing the opposite side. Every triangle has three altitudes. An altitude can be inside, outside, or on the triangle.

In ΔQRS, altitude QY is inside the triangle, but RX and SZ are not In ΔQRS, altitude QY is inside the triangle, but RX and SZ are not. Notice that the lines containing the altitudes are concurrent at P. This point of concurrency is the orthocenter of the triangle.

Definition of Orthocenter An Orthocenter is the point of Currency of the altitudes.

Where is the Orthocenter? The Orthocenter in an Acute triangle is inside. an obtuse triangle is outside a right triangle is on, at the vertex of the right angle

Vocabulary Review Circumcenter – Point where three perpendicular bisectors of a triangle intersect. Incenter – Point where three angle bisectors of a triangle intersect. Centroid (Center of Gravity) – Point where three medians of a triangle intersect. Orthocenter – Point where three altitudes of a triangle intersect.

Is AB a perpendicular bisector, an altitude, a median, an angle bisector, or none of these?