Yoshinori Tomoyasu, Yasuyuki Arakane, Karl J. Kramer, Robin E. Denell 

Slides:



Advertisements
Similar presentations
Volume 17, Issue 7, Pages (April 2007)
Advertisements

Volume 24, Issue 15, Pages (August 2014)
John F. Golz, Emma J. Keck, Andrew Hudson  Current Biology 
The DHHC Palmitoyltransferase Approximated Regulates Fat Signaling and Dachs Localization and Activity  Hitoshi Matakatsu, Seth S. Blair  Current Biology 
Insect evolution: Redesigning the fruitfly
The generation and diversification of butterfly eyespot color patterns
Volume 19, Issue 23, Pages (December 2009)
Ras Activity in the Drosophila Prothoracic Gland Regulates Body Size and Developmental Rate via Ecdysone Release  Philip E. Caldwell, Magdalena Walkiewicz,
Volume 25, Issue 1, Pages (January 2015)
Drosophila development: Scalloped and Vestigial take wing
Naoki Hisamoto, Chun Li, Motoki Yoshida, Kunihiro Matsumoto 
Butterfly Wing Pattern Evolution Is Associated with Changes in a Notch/Distal-less Temporal Pattern Formation Process  Robert D Reed, Michael S Serfas 
Vivek S. Chopra, Joung-Woo Hong, Michael Levine  Current Biology 
Mutual Repression by Bantam miRNA and Capicua Links the EGFR/MAPK and Hippo Pathways in Growth Control  Héctor Herranz, Xin Hong, Stephen M. Cohen  Current.
Temporal Control of Plant Organ Growth by TCP Transcription Factors
Volume 22, Issue 17, Pages (September 2012)
Nikhila S. Tanneti, Kathryn Landy, Eric F. Joyce, Kim S. McKim 
Volume 16, Issue 12, Pages (June 2006)
Rho-LIM Kinase Signaling Regulates Ecdysone-Induced Gene Expression and Morphogenesis during Drosophila Metamorphosis  Guang-Chao Chen, Patrycja Gajowniczek,
Sequential Protein Recruitment in C. elegans Centriole Formation
Act up Controls Actin Polymerization to Alter Cell Shape and Restrict Hedgehog Signaling in the Drosophila Eye Disc  Aude Benlali, Irena Draskovic, Dennis.
Kim F. Rewitz, Naoki Yamanaka, Michael B. O'Connor  Developmental Cell 
Volume 21, Issue 4, Pages (February 2011)
John F. Golz, Emma J. Keck, Andrew Hudson  Current Biology 
Volume 9, Issue 3, Pages (February 1999)
Proteolysis of the Hedgehog Signaling Effector Cubitus interruptus Requires Phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1  Mary Ann.
Precision of Hunchback Expression in the Drosophila Embryo
Helen Strutt, Mary Ann Price, David Strutt  Current Biology 
Adrienne H.K. Roeder, Cristina Ferrándiz, Martin F. Yanofsky 
Evo–Devo: The Double Identity of Insect Wings
Muscles in the Drosophila second thoracic segment are patterned independently of autonomous homeotic gene function  Sudipto Roy, L.S. Shashidhara, K VijayRaghavan 
Transcription in the Absence of Histone H3.2 and H3K4 Methylation
Volume 24, Issue 15, Pages (August 2014)
Volume 20, Issue 15, Pages (August 2010)
Volume 16, Issue 21, Pages (November 2006)
Volume 18, Issue 15, Pages (August 2008)
Luis Alberto Baena-López, Antonio Baonza, Antonio García-Bellido 
J.P. Couso, E. Knust, A. Martinez Arias  Current Biology 
Volume 19, Issue 16, Pages (August 2009)
Boss/Sev Signaling from Germline to Soma Restricts Germline-Stem-Cell-Niche Formation in the Anterior Region of Drosophila Male Gonads  Yu Kitadate, Shuji.
The Adult Body Plan of Indirect Developing Hemichordates Develops by Adding a Hox- Patterned Trunk to an Anterior Larval Territory  Paul Gonzalez, Kevin.
Volume 22, Issue 14, Pages (July 2012)
Volume 22, Issue 8, Pages (April 2012)
Volume 19, Issue 15, Pages (August 2009)
Volume 19, Issue 18, Pages (September 2009)
Volume 25, Issue 23, Pages (December 2015)
Expansion-Repression Mechanism for Scaling the Dpp Activation Gradient in Drosophila Wing Imaginal Discs  Danny Ben-Zvi, George Pyrowolakis, Naama Barkai,
Whorl-Specific Expression of the SUPERMAN Gene of Arabidopsis Is Mediated by cis Elements in the Transcribed Region  Toshiro Ito, Hajime Sakai, Elliot.
Developmental Basis of Phallus Reduction during Bird Evolution
Cell-Nonautonomous Regulation of C. elegans Germ Cell Death by kri-1
A Role of Receptor Notch in Ligand cis-Inhibition in Drosophila
Di Jiang, Edwin M. Munro, William C. Smith  Current Biology 
Volume 1, Issue 3, Pages (September 2001)
Volume 14, Issue 4, Pages (April 2008)
Let-7-Complex MicroRNAs Regulate the Temporal Identity of Drosophila Mushroom Body Neurons via chinmo  Yen-Chi Wu, Ching-Huan Chen, Adam Mercer, Nicholas S.
Heterochronic Genes and the Nature of Developmental Time
Trimeric G Protein-Dependent Frizzled Signaling in Drosophila
Posterior Localization of Dynein and Dorsal-Ventral Axis Formation Depend on Kinesin in Drosophila Oocytes  Robert P. Brendza, Laura R. Serbus, William.
Stefano De Renzis, J. Yu, R. Zinzen, Eric Wieschaus  Developmental Cell 
The sterol-sensing domain of Patched protein seems to control Smoothened activity through Patched vesicular trafficking  Verónica Martı́n, Graciela Carrillo,
Interaxonal Interaction Defines Tiled Presynaptic Innervation in C
Volume 20, Issue 7, Pages (April 2010)
F. Christian Bennett, Kieran F. Harvey  Current Biology 
Matthew C Gibson, Gerold Schubiger  Cell 
The Origin of Centrosomes in Parthenogenetic Hymenopteran Insects
Brent S. Wells, Eri Yoshida, Laura A. Johnston  Current Biology 
Geanette Lam, Carl S. Thummel  Current Biology 
Volume 20, Issue 18, Pages (September 2010)
Axis Formation: Squint Comes into Focus
Volume 13, Issue 21, Pages (October 2003)
Presentation transcript:

Repeated Co-options of Exoskeleton Formation during Wing-to-Elytron Evolution in Beetles  Yoshinori Tomoyasu, Yasuyuki Arakane, Karl J. Kramer, Robin E. Denell  Current Biology  Volume 19, Issue 24, Pages 2057-2065 (December 2009) DOI: 10.1016/j.cub.2009.11.014 Copyright © 2009 Elsevier Ltd Terms and Conditions

Figure 1 Elytra and Sclerotized Body Wall Share Biochemical and Transcriptional Characters (A and B) Wild-type adult elytron (A) and hindwing (B) of Tribolium. Scale bars represent 200 μm. (C) Wild-type and various body-color mutants. cola (co), sooty (s), jet (j), and black (b) are shown. (D) EGFP expression in KS217 pupa. Regions that will form hard cuticle express EGFP (arrow), whereas those that will form soft cuticle lack EGFP (arrowhead). (E–H) RNA interference (RNAi) adults (top) and pterostigma in hindwings (bottom; corresponds to the region boxed in B). Wild-type (E), ebony RNAi (F), yellow RNAi (G), and ebony and yellow double RNAi (H) are shown. Current Biology 2009 19, 2057-2065DOI: (10.1016/j.cub.2009.11.014) Copyright © 2009 Elsevier Ltd Terms and Conditions

Figure 2 Expression Patterns and RNAi Phenotypes of Tribolium Wing/Body Wall Patterning Genes (A–D) Wing/body wall gene expression detected by in situ hybridization in elytron discs (top) and hindwing discs (bottom). hth (A), nub (B), vvl (C), and srf (D) are shown. Scale bar represents 50 nm. (E–G) Wild-type mesonotum (E) and RNAi phenotypes for tiotsh (F) and hth (G). (H–K) Wild-type adult (H) and RNAi phenotypes for wing genes. nub (I), vg (J), and srf (K) are shown. Current Biology 2009 19, 2057-2065DOI: (10.1016/j.cub.2009.11.014) Copyright © 2009 Elsevier Ltd Terms and Conditions

Figure 3 Expression Patterns of Anterior-Posterior and Dorsal-Ventral Patterning Genes in the Tribolium Dorsal Appendage Discs (A–K) Wing gene expression in elytron discs (top) and hindwing discs (bottom) detected either by in situ hybridization (B–H and J) or antibody staining (A, I, and K). Genes are indicated in the panels. ci and ptc have additional posterior expression that is not seen in Drosophila wing discs (arrow in C and D). dpp is expressed only at the distal tips of discs (arrowhead in E). (L) Wing gene network in Drosophila. Current Biology 2009 19, 2057-2065DOI: (10.1016/j.cub.2009.11.014) Copyright © 2009 Elsevier Ltd Terms and Conditions

Figure 4 RNAi Phenotypes for the Genes Involved in Elytral Exoskeletalization (A and B) Adult phenotype of early ap RNAi (apA and apB double RNAi performed at early last larval stage) (A) and a magnified view of the thoracic region (B). Arrowheads indicate vestiges of elytron and hindwing. (C) Elytron of late ap RNAi. (D) A magnified image of wild-type elytron. (E and F) Late ap RNAi elytron viewed by light microscopy (E) and scanning electron microscopy (F). (G and H) EGFP expression in KS217 pupal elytron (G) and in a KS217 pupal elytron subjected to late ap RNAi (H). (I) Elytron of Tc-ASH, apA, apB triple RNAi. (J–L) Priacma serrata adult (J) and elytron (K and L). Scale bar represents 2 mm. Veins in (D)–(I) are indicated by arrows. Current Biology 2009 19, 2057-2065DOI: (10.1016/j.cub.2009.11.014) Copyright © 2009 Elsevier Ltd Terms and Conditions

Figure 5 Function of ap Genes in Insect Hindwing Development (A) Tribolium hindwing with ap RNAi performed at mid last larval stage. The arrow indicates elytron-like tissue. Marginal truncation is also observed (arrowhead). (B) Dorsal elytron-like tissue in ap RNAi hindwing. (C) Ventral elytron-like structures in ap RNAi hindwing. (D) A magnified view of the box in (C). (E) Wild-type ventral elytron. (F–H) Wild-type and ap mutant Drosophila adults. Wild-type (F), aprK568/apGal4 (G), and aprK568/apGal4; UAS-fng UAS-PS1/+ (H) are shown. Halteres are indicated by arrows (F and H). (I–L) Wild-type and mutant Drosophila halteres. Wild-type (I), apGal4/CyO; UAS-fng UAS-PS1/+ (J), aprK568/apGal4; UAS-fng UAS-PS1/+ (K), and Ubxbx-34e (L) are shown. Arrows indicate wing-like marginal bristles (K and L). Current Biology 2009 19, 2057-2065DOI: (10.1016/j.cub.2009.11.014) Copyright © 2009 Elsevier Ltd Terms and Conditions