Volume 36, Issue 6, Pages (December 2009)

Slides:



Advertisements
Similar presentations
Volume 28, Issue 4, Pages (November 2007)
Advertisements

Structural Basis of Substrate Methylation and Inhibition of SMYD2
Volume 124, Issue 6, Pages (March 2006)
Volume 9, Issue 10, Pages (October 2001)
Crystal Structure of the Tandem Phosphatase Domains of RPTP LAR
Structure of the Human Telomerase RNA Pseudoknot Reveals Conserved Tertiary Interactions Essential for Function  Carla A. Theimer, Craig A. Blois, Juli.
The Unique N Terminus of the UbcH10 E2 Enzyme Controls the Threshold for APC Activation and Enhances Checkpoint Regulation of the APC  Matthew K. Summers,
Ubiquitination Accomplished: E1 and E2 Enzymes Were Not Necessary
Volume 62, Issue 4, Pages (May 2016)
Structure of an LDLR-RAP Complex Reveals a General Mode for Ligand Recognition by Lipoprotein Receptors  Carl Fisher, Natalia Beglova, Stephen C. Blacklow 
Volume 21, Issue 5, Pages (May 2013)
Volume 47, Issue 6, Pages (September 2012)
Volume 124, Issue 1, Pages (January 2006)
Volume 63, Issue 6, Pages (September 2016)
Volume 35, Issue 5, Pages (September 2009)
Structural Basis for the Specific Recognition of Methylated Histone H3 Lysine 4 by the WD-40 Protein WDR5  Zhifu Han, Lan Guo, Huayi Wang, Yue Shen, Xing.
Volume 36, Issue 4, Pages (November 2009)
Volume 31, Issue 6, Pages (September 2008)
Volume 28, Issue 4, Pages (November 2007)
Ubiquitin Recognition by the Human TSG101 Protein
Volume 28, Issue 1, Pages (October 2007)
Volume 20, Issue 6, Pages (December 2005)
Volume 31, Issue 2, Pages (July 2008)
Volume 58, Issue 2, Pages (April 2015)
Volume 21, Issue 10, Pages (October 2013)
Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis  Marcin Nowotny, Sergei A. Gaidamakov, Robert.
Structure of the UBA Domain of Dsk2p in Complex with Ubiquitin
Volume 21, Issue 6, Pages (March 2006)
Imsang Lee, Hermann Schindelin  Cell 
Volume 20, Issue 1, Pages 9-19 (October 2005)
Volume 25, Issue 4, Pages (February 2007)
Volume 20, Issue 12, Pages (December 2012)
Structural Basis for Protein Recognition by B30.2/SPRY Domains
Volume 19, Issue 3, Pages (August 2005)
A Dual E3 Mechanism for Rub1 Ligation to Cdc53
Zhenjian Cai, Nabil H. Chehab, Nikola P. Pavletich  Molecular Cell 
Volume 18, Issue 2, Pages (April 2005)
Shaun K. Olsen, Christopher D. Lima  Molecular Cell 
Structural Insights into Ligand Recognition by a Sensing Domain of the Cooperative Glycine Riboswitch  Lili Huang, Alexander Serganov, Dinshaw J. Patel 
Volume 12, Issue 6, Pages (December 2003)
Binding of OTULIN to the PUB Domain of HOIP Controls NF-κB Signaling
Volume 30, Issue 3, Pages (May 2008)
Structural Basis of EZH2 Recognition by EED
Volume 19, Issue 9, Pages (September 2011)
Volume 41, Issue 3, Pages (February 2011)
A Drug-Drug Interaction Crystallizes a New Entry Point into the UPR
Volume 6, Issue 6, Pages (December 2000)
Volume 25, Issue 6, Pages e5 (June 2017)
Masaru Goto, Rie Omi, Noriko Nakagawa, Ikuko Miyahara, Ken Hirotsu 
Volume 15, Issue 2, Pages (February 2007)
Structure of Dihydroorotate Dehydrogenase B
Volume 24, Issue 7, Pages (July 2016)
A Role for Intersubunit Interactions in Maintaining SAGA Deubiquitinating Module Structure and Activity  Nadine L. Samara, Alison E. Ringel, Cynthia Wolberger 
Volume 52, Issue 3, Pages (November 2013)
Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with an Unusual Mode of Binding  David J. Sidote, Christopher.
Robert S. Magin, Glen P. Liszczak, Ronen Marmorstein  Structure 
Gregory J. Miller, James H. Hurley  Molecular Cell 
Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis  Marcin Nowotny, Sergei A. Gaidamakov, Robert.
Volume 33, Issue 4, Pages (February 2009)
Volume 21, Issue 1, Pages (January 2013)
Structure of the Siz/PIAS SUMO E3 Ligase Siz1 and Determinants Required for SUMO Modification of PCNA  Ali A. Yunus, Christopher D. Lima  Molecular Cell 
Volume 11, Issue 1, Pages (January 2003)
Tag-Team SUMO Wrestling
It Takes Two Binding Sites for Calcineurin and NFAT to Tango
Volume 127, Issue 7, Pages (December 2006)
Volume 27, Issue 1, Pages (July 2007)
The Structure of T. aquaticus DNA Polymerase III Is Distinct from Eukaryotic Replicative DNA Polymerases  Scott Bailey, Richard A. Wing, Thomas A. Steitz 
Joshua J. Sims, Robert E. Cohen  Molecular Cell 
Robert S. Magin, Glen P. Liszczak, Ronen Marmorstein  Structure 
Volume 14, Issue 8, Pages (August 2006)
Presentation transcript:

Volume 36, Issue 6, Pages 1095-1102 (December 2009) Insights into Ubiquitin Transfer Cascades from a Structure of a UbcH5B∼Ubiquitin- HECTNEDD4L Complex  Hari B. Kamadurai, Judith Souphron, Daniel C. Scott, David M. Duda, Darcie J. Miller, Daniel Stringer, Robert C. Piper, Brenda A. Schulman  Molecular Cell  Volume 36, Issue 6, Pages 1095-1102 (December 2009) DOI: 10.1016/j.molcel.2009.11.010 Copyright © 2009 Elsevier Inc. Terms and Conditions

Figure 1 Structure of UbcH5B∼Ub-HECTNEDD4L (A–C) Three views, separated by 90° in y (B) and then 60° in x (C) of UbcH5B (cyan)∼Ub (yellow)-HECTNEDD4L (magenta). Catalytic residues (here serines, but normally cysteines, as indicated) are green spheres. (D–F) Structures of HECTSMURF2 (violet) (D), UbcH7-HECTE6AP (navy, pink) (E), and HECTWWP1 (maroon) (F), oriented as UbcH5B∼Ub-HECTNEDD4L N lobe in (B). Catalytic cysteines are green spheres. Molecular Cell 2009 36, 1095-1102DOI: (10.1016/j.molcel.2009.11.010) Copyright © 2009 Elsevier Inc. Terms and Conditions

Figure 2 UbcH5B-HECTNEDD4L N Lobe Interactions (A) Structural superposition of the E2s in UbcH5B (cyan)∼Ub (not shown for clarity)-HECTNEDD4L (magenta) and UbcH7-HECTE6AP (navy, pink). Catalytic residues are green spheres. (B) Autoradiogram showing time course of pulse-chase transfer of [32P]Ub from UbcH5B (E2∼Ub) to WT and the Y736A mutant HECTNEDD4L (E3∼Ub). (C) Close up view of interactions between UbcH5B (cyan, black labels) and HECTNEDD4L N lobe (magenta), oriented by 90° rotation in y relative to (A). (D) Close up view of interactions between UbcH7 (navy) and HECTE6AP (salmon), in same orientation as UbcH5B-HECTNEDD4L in (C). Oxygens are red, nitrogens blue, and salt-bridges/H-bonds dashes. Molecular Cell 2009 36, 1095-1102DOI: (10.1016/j.molcel.2009.11.010) Copyright © 2009 Elsevier Inc. Terms and Conditions

Figure 3 Ub-HECTNEDD4L C Lobe Interface (A) Close up view of Ub (yellow)-HECTNEDD4L (magenta). In the structure, the active site cysteines are substituted with serines, but are labeled C85∗ and C922∗ from UbcH5B and NEDD4L, respectively, to indicate native sequences. Oxygens are red, nitrogens blue, and salt bridges/H-bonds dashes. (B and C) Autoradiograms showing time course of pulse-chase transfer of [32P]Ub from UbcH5B (E2∼Ub) to GST-tagged HECT domain of NEDD4L (E3∼Ub), for WT and the indicated mutant of NEDD4L (B) or Ub (C). Molecular Cell 2009 36, 1095-1102DOI: (10.1016/j.molcel.2009.11.010) Copyright © 2009 Elsevier Inc. Terms and Conditions

Figure 4 Model for E2-to-HECT E3 Transthiolation (A) Structural model of UbcH5B (cyan, catalytic Cys85 green)∼Ub (yellow)-NEDD4L HECT domain (magenta) in a putative conformation for the transthiolation reaction. ∼4° rotation about the N and C lobes allows NEDD4L catalytic Cys922 (green) to approach the Ub C terminus. Intermolecular contact residues poised to influence transthiolation are represented as sticks. (B) Conservation among HECTs displayed on HECTNEDD4L surface (white, no conservation; magenta, 100% identity except catalytic cysteine that is green), in model of transthiolation complex with UbcH5B∼Ub. (C) Autoradiograms showing time course of pulse-chase transfer of [32P]Ub from UbcH5B (E2∼Ub) to GST-tagged HECT domain of NEDD4L (E3∼Ub) for WT and indicated mutants in UbcH5B (top) or NEDD4L (bottom). Molecular Cell 2009 36, 1095-1102DOI: (10.1016/j.molcel.2009.11.010) Copyright © 2009 Elsevier Inc. Terms and Conditions