L. De Franceschi, Ph. D. , L. Roseti, Ph. D. , G. Desando, Ph. D. , A

Slides:



Advertisements
Similar presentations
Effects of long-term estrogen replacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagen and proteoglycan levels in ovariectomized cynomolgus.
Advertisements

Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation  P. Bernstein, C. Sticht,
Perlecan in late stages of osteoarthritis of the human knee joint
H. J. Pulkkinen, V. Tiitu, P. Valonen, J. S. Jurvelin, M. J. Lammi, I
Muscle cell-derived factors inhibit inflammatory stimuli-induced damage in hMSC- derived chondrocytes  R.S. Rainbow, H. Kwon, A.T. Foote, R.C. Preda, D.L.
Perlecan in late stages of osteoarthritis of the human knee joint
Biochemical markers of type II collagen breakdown and synthesis are positioned at specific sites in human osteoarthritic knee cartilage  A.-C. Bay-Jensen,
Infrapatellar fat pad aggravates degeneration of acute traumatized cartilage: a possible role for interleukin-6  J. He, Y. Jiang, P.G. Alexander, V. Ulici,
Possible involvement of the oxidized low-density lipoprotein/lectin-like oxidized low- density lipoprotein receptor-1 system in pathogenesis and progression.
T2 mapping: an efficient MR quantitative technique to evaluate spontaneous cartilage repair in rat patella1 1 This work was supported by grants from Projet.
Characterization of cells from pannus-like tissue over articular cartilage of advanced osteoarthritis  G.-H Yuan, M.D., Ph.D., M Tanaka, V.M.D., K Masuko-Hongo,
Aggrecanolysis in human osteoarthritis: confocal localization and biochemical characterization of ADAMTS5–hyaluronan complexes in articular cartilages 
R. Piva, E. Lambertini, C. Manferdini, C. Capanni, L. Penolazzi, E
Glucosamine sulfate reduces experimental osteoarthritis and nociception in rats: association with changes of mitogen-activated protein kinase in chondrocytes 
Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels  G.D. Nicodemus, S.J. Bryant  Osteoarthritis.
The role of the PCM in reducing oxidative stress induced by radical initiated photoencapsulation of chondrocytes in poly(ethylene glycol) hydrogels  N.
Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage  Peggy M.
Insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) is closely associated with the chondrocyte nucleus in human articular cartilage  E.B. Hunziker,
G.-I. Im, H.-J. Kim  Osteoarthritis and Cartilage 
Synergistic effect of IGF-1 and OP-1 on matrix formation by normal and OA chondrocytes cultured in alginate beads  S. Chubinskaya, Ph.D., A. Hakimiyan,
S. Varghese, Ph. D. , P. Theprungsirikul, B. S. , S. Sahani, B. S. , N
C. Pauli, S. P. Grogan, S. Patil, S. Otsuki, A. Hasegawa, J. Koziol, M
The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels  T. Hao, N. Wen, J.-K.
The layered structure of the articular surface
Expression of the semicarbazide-sensitive amine oxidase in articular cartilage: its role in terminal differentiation of chondrocytes in rat and human 
C. Candrian, S. Miot, F. Wolf, E. Bonacina, S. Dickinson, D. Wirz, M
Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair  C. Candrian, M.D., E. Bonacina, B.Sc.,
Y. Kodama, T. Furumatsu, M. Fujii, T. Hino 
C. Wu, J. Zheng, X. Yao, H. Shan, Y. Li, P. Xu, X. Guo 
The differences on extracellular matrix among each portion of meniscus
Single cell sorting identifies progenitor cell population from full thickness bovine articular cartilage  Y. Yu, H. Zheng, J.A. Buckwalter, J.A. Martin 
Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo  A.I. Chou, S.O. Akintoye, S.B. Nicoll  Osteoarthritis.
Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes  Simon R.
A histological comparison of the repair tissue formed when using either Chondrogide® or periosteum during autologous chondrocyte implantation  H.S. McCarthy,
Effects of long-term estrogen replacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagen and proteoglycan levels in ovariectomized cynomolgus.
Methylation of the OP-1 promoter: potential role in the age-related decline in OP-1 expression in cartilage  R.F. Loeser, M.D., H.-J. Im, Ph.D., B. Richardson,
Low calcium levels in serum-free media maintain chondrocyte phenotype in monolayer culture and reduce chondrocyte aggregation in suspension culture  A.
Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins  M. Pei, M.D., Ph.D., J. Luo, M.D.,
Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment  B. Appel, J. Baumer, D.
The BMP antagonists follistatin and gremlin in normal and early osteoarthritic cartilage: an immunohistochemical study  G. Tardif, Ph.D., J.-P. Pelletier,
Changes in the metabolism of chondroitin sulfate glycosaminoglycans in articular cartilage from patients with Kashin–Beck disease  M. Luo, J. Chen, S.
Immature murine articular chondrocytes in primary culture: a new tool for investigating cartilage  Colette Salvat, B.Sc., Audrey Pigenet, Lydie Humbert,
T. Kurth, M. Sc. , E. Hedbom, Ph. D. , N. Shintani, Ph. D. , M
Nonlinear optical microscopy of articular cartilage
Pharmaceutical nanocarrier association with chondrocytes and cartilage explants: influence of surface modification and extracellular matrix depletion 
Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application  L. Wang, M.S., M. Lazebnik,
Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis  M. Bellido, L. Lugo,
Growth characterization of neo porcine cartilage pellets and their use in an interactive culture model  Carsten Lübke, Ph.D., Jochen Ringe, M.Sc., Veit.
Molecular differentiation between osteophytic and articular cartilage – clues for a transient and permanent chondrocyte phenotype  K. Gelse, A.B. Ekici,
An experimental study on costal osteochondral graft
Chondrocytes attach to hyaline or calcified cartilage and bone1 1 Funding Support: This work was supported by Genzyme Biosurgery, Boston, USA and CIHR. 
Evidence to suggest that cathepsin K degrades articular cartilage in naturally occurring equine osteoarthritis  T. Vinardell, D.V.M., I.P.S.A.V., M.Sc.,
A.L. McNulty, B.T. Estes, R.E. Wilusz, J.B. Weinberg, F. Guilak 
Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression 
Mevastatin reduces cartilage degradation in rabbit experimental osteoarthritis through inhibition of synovial inflammation  Y. Akasaki, M.D., S. Matsuda,
Heinz-J. Hausser, Ph.D., Ralf Decking, M.D., Rolf E. Brenner, M.D. 
Characterization of proteoglycan production and processing by chondrocytes and BMSCs in tissue engineered constructs  J.T. Connelly, Ph.D., C.G. Wilson,
Articular cartilage metabolism in patients with Kashin–Beck Disease: an endemic osteoarthropathy in China  J. Cao, M.D., S. Li, M.D., M.Sc., Z. Shi, M.Sc.,
Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration  S. Ashraf, B.-H. Cha, J.-S. Kim, J. Ahn, I.
Tissue engineering of stratified articular cartilage from chondrocyte subpopulations  T.J. Klein, M.S., B.L. Schumacher, B.S., T.A. Schmidt, M.S., K.W.
Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair  A.C. Kuo, M.D., Ph.D., J.J. Rodrigo, M.D.,
Changes in microstructure and gene expression of articular chondrocytes cultured in a tube under mechanical stress  Shuitsu Maeda, M.D., Jun Nishida,
J. Haag, R. Voigt, S. Soeder, T. Aigner  Osteoarthritis and Cartilage 
Altered expression of chondroitin sulfate structure modifying sulfotransferases in the articular cartilage from adult osteoarthritis and Kashin-Beck disease 
Cellular origin of neocartilage formed at wound edges of articular cartilage in a tissue culture experiment  P.K. Bos, M.D., Ph.D., N. Kops, B.Sc., J.A.N.
Identification of opticin, a member of the small leucine-rich repeat proteoglycan family, in human articular tissues: a novel target for MMP-13 in osteoarthritis 
L. Xu, I. Polur, C. Lim, J.M. Servais, J. Dobeck, Y. Li, B.R. Olsen 
The detached osteochondral fragment as a source of cells for autologous chondrocyte implantation (ACI) in the ankle joint  S. Giannini, M.D., R. Buda,
H. Stenhamre, M. Sc. , K. Slynarski, M. D. , Ph. D. , C. Petrén, T
Demineralized bone alters expression of Wnt network components during chondroinduction of post-natal fibroblasts  Karen E. Yates, Ph.D  Osteoarthritis.
Presentation transcript:

A molecular and histological characterization of cartilage from patients with Morquio syndrome  L. De Franceschi, Ph.D., L. Roseti, Ph.D., G. Desando, Ph.D., A. Facchini, M.D., B. Grigolo, Ph.D.  Osteoarthritis and Cartilage  Volume 15, Issue 11, Pages 1311-1317 (November 2007) DOI: 10.1016/j.joca.2007.04.008 Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Real-Time PCR analysis of collagens I and II and aggrecan mRNAs' expression in chondrocytes isolated from patients with Morquio syndrome and from controls. Data were normalized to GAPDH and expressed as mRNA copies/%GAPDH. Osteoarthritis and Cartilage 2007 15, 1311-1317DOI: (10.1016/j.joca.2007.04.008) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Representative patient light microscopy evaluation after Safranin-O staining showing a poorly organized morphological structure with larger and not homogeneously distributed cells both in the superficial layer and in the deep zone (A) (bar=200μm) compared to normal hyaline cartilage (B) (bar=320μm). Osteoarthritis and Cartilage 2007 15, 1311-1317DOI: (10.1016/j.joca.2007.04.008) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Immunostaining for collagen type II in cartilage from a patient with Morquio disease shows a weak positivity which is confined to the extracellular matrix of both the superficial layer (A) (bar=200μm) and the deep zone while the cells are negative (B) (bar=500×). The healthy tissue shows a positivity which is evident both for the extracellular matrix (C) (bar=160μm) and the cells (D) (bar=500×). Collagen type II was developed using new fuchsine (red is positive stain). Osteoarthritis and Cartilage 2007 15, 1311-1317DOI: (10.1016/j.joca.2007.04.008) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Immunostaining for collagen type I shows a great positivity at cellular level both in the superficial and in the deep zones (A) (bar=200μm). The control tissue is negative (B) (bar=320μm). Collagen type I was developed using new fuchsine (red is positive stain). Osteoarthritis and Cartilage 2007 15, 1311-1317DOI: (10.1016/j.joca.2007.04.008) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Immunostaining for total proteoglycans is highly positive inside the cells and in the extracellular matrix also at the superficial layer (A) (bar=200μm). The control shows a normal staining and the superficial layer is almost negative (B) (bar=200μm). Proteoglycans were developed using new fuchsine (red is positive stain). Osteoarthritis and Cartilage 2007 15, 1311-1317DOI: (10.1016/j.joca.2007.04.008) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Immunostaining for keratan sulfate showed a diffuse positivity (A) (bar=200μm), while the control is negative (B) (bar=200μm). The image was acquired under green fluorescence and shows only those nuclei that are positive. Osteoarthritis and Cartilage 2007 15, 1311-1317DOI: (10.1016/j.joca.2007.04.008) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions