Enhanced Tethered-Particle Motion Analysis Reveals Viscous Effects

Slides:



Advertisements
Similar presentations
Volume 88, Issue 3, Pages (March 2005)
Advertisements

Volume 90, Issue 10, Pages (May 2006)
Michiko Tashiro, Hana Inoue, Masato Konishi  Biophysical Journal 
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Temperature Control Methods in a Laser Tweezers System
Thomas J. English, Daniel A. Hammer  Biophysical Journal 
Volume 98, Issue 3, Pages (February 2010)
Bacterial Motility Reveals Unknown Molecular Organization
Volume 113, Issue 9, Pages (November 2017)
Diffusion in a Fluid Membrane with a Flexible Cortical Cytoskeleton
Maria A. Vorontsova, Ho Yin Chan, Vassiliy Lubchenko, Peter G. Vekilov 
Backbone Dynamics of the 18
Avanish S. Parmar, Martin Muschol  Biophysical Journal 
Volume 113, Issue 12, Pages (December 2017)
A.M. Stadler, I. Digel, G.M. Artmann, J.P. Embs, G. Zaccai, G. Büldt 
Dynamics of the Serine Chemoreceptor in the Escherichia coli Inner Membrane: A High- Speed Single-Molecule Tracking Study  Dongmyung Oh, Yang Yu, Hochan.
Apparent Subdiffusion Inherent to Single Particle Tracking
Volume 102, Issue 11, Pages (June 2012)
Volume 111, Issue 2, Pages (July 2016)
Volume 99, Issue 4, Pages (August 2010)
Volume 100, Issue 8, Pages (April 2011)
Intact Telopeptides Enhance Interactions between Collagens
Edmond Chow, Jeffrey Skolnick  Biophysical Journal 
Avanish S. Parmar, Martin Muschol  Biophysical Journal 
Ben Corry, Serdar Kuyucak, Shin-Ho Chung  Biophysical Journal 
Volume 109, Issue 8, Pages (October 2015)
Qiaochu Li, Stephen J. King, Ajay Gopinathan, Jing Xu 
V. Vetri, G. Ossato, V. Militello, M.A. Digman, M. Leone, E. Gratton 
Volume 109, Issue 5, Pages (September 2015)
Taeyoon Kim, Margaret L. Gardel, Ed Munro  Biophysical Journal 
Abir M. Kabbani, Christopher V. Kelly  Biophysical Journal 
Volume 111, Issue 7, Pages (October 2016)
V.M. Burlakov, R. Taylor, J. Koerner, N. Emptage  Biophysical Journal 
Protein Fibrillation Lag Times During Kinetic Inhibition
Volume 99, Issue 9, Pages (November 2010)
Sanjin Marion, Carmen San Martín, Antonio Šiber  Biophysical Journal 
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Volume 103, Issue 2, Pages (July 2012)
NikR Repressor Chemistry & Biology
Jiang Hong, Shangqin Xiong  Biophysical Journal 
Statistics of Active Transport in Xenopus Melanophores Cells
Volume 96, Issue 5, Pages (March 2009)
Volume 109, Issue 3, Pages (August 2015)
Teuta Pilizota, Joshua W. Shaevitz  Biophysical Journal 
Volume 84, Issue 1, Pages (January 2003)
Volume 99, Issue 8, Pages (October 2010)
Thermodynamic Characterization of the Unfolding of the Prion Protein
Congju Chen, Irina M. Russu  Biophysical Journal 
Acyl Chain Length and Saturation Modulate Interleaflet Coupling in Asymmetric Bilayers: Effects on Dynamics and Structural Order  Salvatore Chiantia,
Felix Ruhnow, David Zwicker, Stefan Diez  Biophysical Journal 
Volume 95, Issue 5, Pages (September 2008)
Volume 112, Issue 4, Pages (February 2017)
Microscopic Analysis of Bacterial Motility at High Pressure
Cyclic AMP Diffusion Coefficient in Frog Olfactory Cilia
Volume 108, Issue 10, Pages (May 2015)
Dustin B. McIntosh, Gina Duggan, Quentin Gouil, Omar A. Saleh 
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
Abir M. Kabbani, Christopher V. Kelly  Biophysical Journal 
Interaction of Oxazole Yellow Dyes with DNA Studied with Hybrid Optical Tweezers and Fluorescence Microscopy  C.U. Murade, V. Subramaniam, C. Otto, Martin.
Maria Goiko, John R. de Bruyn, Bryan Heit  Biophysical Journal 
Backbone Dynamics of the 18
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Volume 112, Issue 3, Pages (February 2017)
Probing the Dynamics of Clot-Bound Thrombin at Venous Shear Rates
Ricksen S. Winardhi, Qingnan Tang, Jin Chen, Mingxi Yao, Jie Yan 
Volume 109, Issue 8, Pages (October 2015)
Volume 113, Issue 2, Pages (July 2017)
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
George D. Dickinson, Ian Parker  Biophysical Journal 
Presentation transcript:

Enhanced Tethered-Particle Motion Analysis Reveals Viscous Effects Sandip Kumar, Carlo Manzo, Chiara Zurla, Suleyman Ucuncuoglu, Laura Finzi, David Dunlap  Biophysical Journal  Volume 106, Issue 2, Pages 399-409 (January 2014) DOI: 10.1016/j.bpj.2013.11.4501 Copyright © 2014 Biophysical Society Terms and Conditions

Figure 1 Representative excursion data. A bead with a radius of 240 nm attached to a DNA tether 2211 bp long was tracked for 400 s. (a–c) xy positions (a), x-positions (b), or y-positions (c) are shown as a function of time. (d) Normalized distribution of the projected distances to the anchor point, ρ, are shown for the same time interval. Biophysical Journal 2014 106, 399-409DOI: (10.1016/j.bpj.2013.11.4501) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 2 Prediction of anchor points as a function of the averaging time. In λ buffer containing 70% glycerol (v/v), a bead with a radius of 160 nm, attached to a DNA tether 1749 bp in length, was tracked for the time intervals indicated. Black dots are the positions of the bead, and the + symbol indicates the anchor point determined by xt,yt (x and y averages). Positions and anchor points are shown for time intervals of 1, 4, 40, or 80 s. An interval of at least 40 s was necessary to accurately predict the anchor point. To see this figure in color, go online. Biophysical Journal 2014 106, 399-409DOI: (10.1016/j.bpj.2013.11.4501) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 3 Mean-square excursion measured for different observation times and viscosities. The mean-square excursion for a bead with a radius of 160 nm attached to a DNA tether 2103 bp long, in λ buffer containing various percentages of glycerol (0, 20, 30, 50, and 70% (v/v)) was calculated using the formula ρt2=((x−xt)2+(y−yt)2)t, for times t = 0.04, 0.08, 0.16, 0.32, 0.64, 1.28, 2.56, 5.12, 10.24, 20.48, 40.96, 81.92 s and plotted against log(t). The points corresponding to the same viscosities (percentage of glycerol) are connected using smooth lines. A tethered bead required a longer time to reach the maximum excursion in a higher-viscosity solution. Error bars indicate standard deviations of the time-averaged excursions measured for an ensemble of symmetrically moving tethered beads with closely clustered values. Biophysical Journal 2014 106, 399-409DOI: (10.1016/j.bpj.2013.11.4501) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 4 Calibration of mean-square excursion versus DNA contour length. Mean-square excursion values for two sizes of tethered beads (radii of 160 and 240 nm) in different buffers were calculated using the formula ρt2=((x−xt)2+(y−yt)2)t, with t = 20.48 s. The data, ρ20.48s2, with linear fits are for 240 nm radii beads in λ buffer (<ρ2> = 100.39 × L + 13,383, ⋄), 160-nm-radius beads in λ buffer (<ρ2> = 100.89 × L + 3445, □), 160-nm-radius beads in λ buffer with added Tween (0.5%) (<ρ2> = 91.79 × L + 3594, Δ), and 240-nm-radius beads in TR buffer (<ρ2> = 119.16 × L + 11,475, ○). Error bars indicate standard deviations of the time-averaged excursions measured for an ensemble of symmetrically moving tethered beads with closely clustered values. Biophysical Journal 2014 106, 399-409DOI: (10.1016/j.bpj.2013.11.4501) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 5 Effect of potassium chloride (KCl) concentration on mean-square excursion. The excursions of beads with 240 nm radius attached to 711-, 1052-, or 1267-bp-long DNA tethers, were measured in buffer (10 mM Tris-HCl, pH 7.4, 5% dimethylsulfoxide, 0.1 mM EDTA, 0.2 mM DTT, and 0.1 mg/ml α-casein) supplemented with 10, 50, 100, or 200 mM KCl. The mean-square excursion of beads attached to DNA tethers changed negligibly within the range of KCl used. Error bars indicate standard deviations of the time-averaged excursions measured for an ensemble of symmetrically moving tethered beads with closely clustered values. Biophysical Journal 2014 106, 399-409DOI: (10.1016/j.bpj.2013.11.4501) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 6 Calibration of DNA contour length versus Lx2. Lx2 was determined from the fit of MSDΔt(x) versus Δt for ensembles of tethered beads and plotted as a function of the contour length (L) of the DNA tether. Linear fits to the averaged data were Lx2 = 642.87 × L + 74,416 for beads of radius 240 nm (⋄) or Lx2 = 627.32 × L + 59,670 for beads of radius 160 nm (□). Error bars indicate standard deviations of Lx2 values determined for an ensemble of identically assembled tethered beads. Biophysical Journal 2014 106, 399-409DOI: (10.1016/j.bpj.2013.11.4501) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 7 DcηR versus contour length. DcηR for viscosities 1.006, 2, 3, and 8 cP (0, 20, 30, and 50% glycerol) were calculated and the averages were plotted for tethered beads of 160 nm (□) and 240 nm (⋄) radius as a function of the contour length of the DNA tether. Dc is the diffusion coefficient, η is the viscosity, and R is the radius of the bead. Error bars indicate standard deviations of Dc values determined for ensembles of symmetric, tethered beads. Biophysical Journal 2014 106, 399-409DOI: (10.1016/j.bpj.2013.11.4501) Copyright © 2014 Biophysical Society Terms and Conditions