Site-Directed Spin-Labeling Study of the Light-Harvesting Complex CP29

Slides:



Advertisements
Similar presentations
Volume 96, Issue 1, Pages (January 2009)
Advertisements

Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
Structural States and Dynamics of the D-Loop in Actin
Maik Goette, Martin C. Stumpe, Ralf Ficner, Helmut Grubmüller 
Adam G. Larson, Nariman Naber, Roger Cooke, Edward Pate, Sarah E. Rice 
Single-Molecule Motions of MHC Class II Rely on Bound Peptides
Volume 113, Issue 12, Pages (December 2017)
Christopher Wostenberg, W.G. Noid, Scott A. Showalter 
William Y.C. Huang, Han-Kuei Chiang, Jay T. Groves  Biophysical Journal 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Volume 97, Issue 8, Pages (October 2009)
MunJu Kim, Katarzyna A. Rejniak  Biophysical Journal 
Marc Jendrny, Thijs J. Aartsma, Jürgen Köhler  Biophysical Journal 
Volume 111, Issue 2, Pages (July 2016)
Po-Chao Wen, Emad Tajkhorshid  Biophysical Journal 
Michael Adrian, Fernaldo Richtia Winnerdy, Brahim Heddi, Anh Tuân Phan 
Volume 106, Issue 6, Pages (March 2014)
Large-Scale Conformational Dynamics of the HIV-1 Integrase Core Domain and Its Catalytic Loop Mutants  Matthew C. Lee, Jinxia Deng, James M. Briggs, Yong.
Volume 86, Issue 4, Pages (April 2004)
Emel Ficici, Daun Jeong, Ioan Andricioaei  Biophysical Journal 
Monika Sharma, Alexander V. Predeus, Nicholas Kovacs, Michael Feig 
Volume 107, Issue 6, Pages (September 2014)
Rainer A. Böckmann, Helmut Grubmüller  Biophysical Journal 
De Novo Design of Foldable Proteins with Smooth Folding Funnel
Brittny C. Davis, Jodian A. Brown, Ian F. Thorpe  Biophysical Journal 
On the Distribution of Protein Refractive Index Increments
Christian Rickert, Catherine Proenza  Biophysical Journal 
Volume 99, Issue 8, Pages (October 2010)
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Volume 106, Issue 4, Pages (February 2014)
A Molecular Dynamics Study of Ca2+-Calmodulin: Evidence of Interdomain Coupling and Structural Collapse on the Nanosecond Timescale  Craig M. Shepherd,
Volume 113, Issue 12, Pages (December 2017)
Andrew E. Blanchard, Mark J. Arcario, Klaus Schulten, Emad Tajkhorshid 
Dynamic Motions of the HIV-1 Frameshift Site RNA
Volume 113, Issue 12, Pages (December 2017)
Volume 96, Issue 7, Pages (April 2009)
Yusuke Nakasone, Kazunori Zikihara, Satoru Tokutomi, Masahide Terazima 
Atomistic Ensemble Modeling and Small-Angle Neutron Scattering of Intrinsically Disordered Protein Complexes: Applied to Minichromosome Maintenance Protein 
Anna M. Popova, Peter Z. Qin  Biophysical Journal 
Dissecting DNA-Histone Interactions in the Nucleosome by Molecular Dynamics Simulations of DNA Unwrapping  Ramona Ettig, Nick Kepper, Rene Stehr, Gero.
Volume 106, Issue 10, Pages (May 2014)
Zara A. Sands, Alessandro Grottesi, Mark S.P. Sansom 
Structure and Topology of the Huntingtin 1–17 Membrane Anchor by a Combined Solution and Solid-State NMR Approach  Matthias Michalek, Evgeniy S. Salnikov,
Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter- nucleosome Interaction  Ruihan Zhang, Jochen Erler, Jörg Langowski  Biophysical.
Pek Ieong, Rommie E. Amaro, Wilfred W. Li  Biophysical Journal 
Activation of the Edema Factor of Bacillus anthracis by Calmodulin: Evidence of an Interplay between the EF-Calmodulin Interaction and Calcium Binding 
Grischa R. Meyer, Justin Gullingsrud, Klaus Schulten, Boris Martinac 
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Rita Pancsa, Daniele Raimondi, Elisa Cilia, Wim F. Vranken 
Structural Flexibility of CaV1. 2 and CaV2
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Fredrik Elinder, Michael Madeja, Hugo Zeberg, Peter Århem 
Martin Kurylowicz, Ching-Hsing Yu, Régis Pomès  Biophysical Journal 
On the Role of Acylation of Transmembrane Proteins
Volume 114, Issue 3, Pages (February 2018)
Volume 114, Issue 1, Pages (January 2018)
Volume 97, Issue 8, Pages (October 2009)
Coupling of S4 Helix Translocation and S6 Gating Analyzed by Molecular-Dynamics Simulations of Mutated Kv Channels  Manami Nishizawa, Kazuhisa Nishizawa 
Coupling of S4 Helix Translocation and S6 Gating Analyzed by Molecular-Dynamics Simulations of Mutated Kv Channels  Manami Nishizawa, Kazuhisa Nishizawa 
Long-Range Nonanomalous Diffusion of Quantum Dot-Labeled Aquaporin-1 Water Channels in the Cell Plasma Membrane  Jonathan M. Crane, A.S. Verkman  Biophysical.
Volume 74, Issue 1, Pages (January 1998)
Volume 109, Issue 7, Pages (October 2015)
Shayantani Mukherjee, Sean M. Law, Michael Feig  Biophysical Journal 
Small-Angle X-Ray Scattering of the Cholesterol Incorporation into Human ApoA1- POPC Discoidal Particles  Søren Roi Midtgaard, Martin Cramer Pedersen,
Joana Pinto Vieira, Julien Racle, Vassily Hatzimanikatis 
Volume 105, Issue 9, Pages (November 2013)
Demian Riccardi, Qiang Cui, George N. Phillips  Biophysical Journal 
Volume 98, Issue 4, Pages (February 2010)
Volume 98, Issue 3, Pages (February 2010)
The NorM MATE Transporter from N
Presentation transcript:

Site-Directed Spin-Labeling Study of the Light-Harvesting Complex CP29 Aleh A. Kavalenka, Ruud B. Spruijt, Cor J.A.M. Wolfs, Janez Štrancar, Roberta Croce, Marcus A. Hemminga, Herbert van Amerongen  Biophysical Journal  Volume 96, Issue 9, Pages 3620-3628 (May 2009) DOI: 10.1016/j.bpj.2009.01.038 Copyright © 2009 Biophysical Society Terms and Conditions

Figure 1 ESR spectra of MTS-SL spin-labeled CP29 protein samples at label positions 4, 15, 33, 40, 56, 65, 81, 90, 97, and 108 reconstituted in DM with (holoprotein, black line) and without (apoprotein, gray line) pigments. The total horizontal scan range is 10 mT. Spectral line heights are normalized to the same central line height (left peak). The simulated spectra are shown in red for holo- and blue for apoprotein samples. Biophysical Journal 2009 96, 3620-3628DOI: (10.1016/j.bpj.2009.01.038) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 2 GHOST plots showing the optimized multiple solutions represented in a two-dimensional distribution of the angles ϑ and φ of MTS-SL spin-labeled CP29 protein samples at positions 65 and 108 reconstituted in DM with (top, holoprotein) and without (bottom, apoprotein) pigments. The components of each solution are represented with a point on the plot with a color, combined of red, green, and blue, which codes for the relative values of τc, W, and pA in their definition intervals {0–3 ns}, {0–0.4 mT}, and {0.8–1.2}, respectively. The closed black lines on the plot surround domains of the solutions grouped into motional patterns. The contribution of each pattern is shown in percents. Additionally, the four spectral components of the best-fit solution are presented on the plot with red (top, holoprotein) and blue (bottom, apoprotein) triangles, whereby the area of each triangle is proportional to the relative contribution of the corresponding component in the simulated spectrum. Biophysical Journal 2009 96, 3620-3628DOI: (10.1016/j.bpj.2009.01.038) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 3 ESR data of MTS-SL spin-labeled CP29 protein samples reconstituted in DM with (A) (holoprotein, red circles) and without (B) (apoprotein, blue circles) pigments. Less-pronounced motional patterns with a contribution below 25% are represented by gray circles. The horizontal axis indicates the spin-label position, the vertical axes give Ω, τc, and pA. High values of Ω (between 0.7 and 1) correspond to (nearly) unrestricted motional patterns of the spin label (i.e., mobile spectral components), whereas low values (between 0 and 0.25) imply very high restrictions (i.e., immobile spectral components). (C) Comparison of the most important motional patterns (with a contribution of more than 25%) of spin-labeled CP29 protein samples with (holoprotein, red circles) and without pigments (apoprotein, blue circles). (D) Weighted averages of the motional patterns of spin-labeled CP29 protein samples with (holoprotein, red circles) and without pigments (apoprotein, blue circles). The area of the circles in A, B, and C is proportional to the relative contribution of the motional patterns to the multiple solution. Biophysical Journal 2009 96, 3620-3628DOI: (10.1016/j.bpj.2009.01.038) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 4 Schematic structural model of CP29 based on the crystal structure of LHCII from spinach (7) (Protein Data Bank ID: 1RWT). The main helical structures (A–E) of the transmembrane protein body are shown in light blue. The extra N-terminal insert of CP29 (as compared to LHCII) is shown as a red loop extruding from the main transmembrane protein body. The N-terminus from amino-acid residue 1–14 is indicated in gray, as this part of the structure is not resolved in the crystal structure of LHCII. The numbers refer to the labeled positions (black dots). Biophysical Journal 2009 96, 3620-3628DOI: (10.1016/j.bpj.2009.01.038) Copyright © 2009 Biophysical Society Terms and Conditions