Chapter 3 Sec 3.1 Lines and Angles.

Slides:



Advertisements
Similar presentations
Angles and Parallel Lines
Advertisements

Angles and Parallel Lines
NM Standards: GT-A-7. Parallel Lines Coplanar lines that do not intersect. The symbol || means “is parallel to” The red arrows also mean “is parallel.
Angles and Parallel Lines
Investigating Angle Pairs Vocabulary Transversal: a line intersecting two or more lines at different points Corresponding Angles: angles that appear to.
Angle Relationships Vocabulary
E.Q. What angle pairs are formed by a transversal?
Chapter 3.1: Identify Pairs of Lines and Angles. M11.B.2.1, M11.C.1.2 What angle pairs are formed by transversals?
Geometry 3-1 Parallel Lines and Angles Parallel Lines- lines that never intersect Symbol: || Perpendicular Lines- lines that intersect and make right angles.
Identify Pairs of Lines and Angles
Angles & Lines Parallels & Transversals From Chapters 1 & 2 which angles do we know are congruent? And how do we know this? Vertical Angles.
3.1 Parallel Lines and Transversals
1 Angles and Parallel Lines. 2 Transversal Definition: A line that intersects two or more lines in a plane at different points is called a transversal.
Parallel lines, transversals and angles
Angle Relationships Common Necessary Vocabulary for Parallel and Intersecting Lines.
Geometry 3.1 Big Idea: Identify pairs of lines and angles Big Idea: Identify pairs of lines and angles.
3-1 Lines and Angles. Parallel and Skew Parallel lines are coplanar lines that do not intersect. – The symbol  means “is parallel to”. Skew lines are.
Boyd/Usilton. Parallel and Skew Lines Parallel lines: coplanar lines that do not intersect. Skew lines: are noncoplanar, not parallel and do not intersect.
3.3 Angles Formed by Transversals Pg 123. Transversal: A transversal is a line that intersects two or more coplanar lines at different points. Transversal.
Warm Up 1.) Name a line that contains C. 2.) Name a ray with endpoint B that contains A. 3.) Name an angle with vertex B that contains C. 4.) Name a segment.
 Lesson 1: Parallel Lines and Transversals.  Parallel lines ( || )- coplanar lines that do not intersect (arrows on lines indicate which sets are parallel.
VOCABULARY UNIT 3. PARALLEL LINES Lines on the same plane that never intersect.
Wednesday, September 5, 2012 BUT BUT Homework: p. 128 #16-33 mentally; writing Homework: p. 128 #16-33 mentally; writing.
GEOMETRY 3-1 Lines and Angles. Vocabulary Examples Identify each of the following. a. a pair of parallel segments b. a pair of skew segments d. a pair.
IDENTIFY PAIRS OF LINES AND ANGLES SECTION
3.1 and 3.2 Parallel lines and transversals
Angles and Parallel Lines
SWLT: Identify angle pairs formed by three intersecting lines GEOMETRY 3.1.
Lines that are coplanar and do not intersect. Parallel Lines.
Chapter 3 Perpendicular & Parallel Lines Sec. 3.1 Lines and Angles GOALS: To identify relationships between lines and angles formed by transversals.
3-1 Parallel and Perpendicular Lines 3-1 Parallel Lines and Transversals.
DO NOW: 1. Write as a biconditional: If it is an egg then it is green. 2.
PARALLEL LINES & TRANSVERSALS Parallel Lines - lines in the same plane that will never intersect.
Section 3.1. Parallel Lines – coplanar lines that never intersect and have the same slope Parallel Lines – coplanar lines that never intersect and have.
2.4 Angle Postulates and Theorems
3.1 Identify Pairs of Lines and Angles. Parallel Lines Have the same slope Can be contained in the same plane Are everywhere the same distance apart.
3.1 Lines and Angles.
Warm Up Word Bank Vertical Angles Congruent Angles Linear Pair Parallel Lines Skew Lines – Lines that do not intersect and are not coplanar.
Objectives Identify parallel, perpendicular, and skew lines.
Parallel lines Section 3-1.
Parallel Lines and Transversals
Angles and Parallel Lines
Lesson 3.1 Lines and Angles
Lines and Angles.
Angles and Parallel Lines
LT 3.1: Identify parallel lines, perpendicular lines, skew lines and angles formed by two lines and a transversal.
Title Notes 3.1 Lines and Angles
Warm Up #3 9/14 Given m<1 = 7x-24 m<2 = 5x+14
vertical alternate interior linear pair
Parallel and Perpendicular Lines
3.1 Notes: Parallel Lines and Transversals
3.1 Pairs of Lines and Angles
Lines & Angles.
Chapter 3: Parallel and Perpendicular Lines
Angles and Parallel Lines
Angles and Parallel Lines
Angles and Parallel Lines
Angles and Parallel Lines
Angles and Parallel Lines
Angles and Parallel Lines
Angles and Parallel Lines
Objectives: Identify parallel and perpendicular lines
Parallel Lines and Transversals
Relationships Between Lines
Angles and Parallel Lines
3.1 – Identify pairs of lines and Angles
3.1 Lines and Angles.
Intro to Parallel Lines
Section 3.1: Lines and Angles
Presentation transcript:

Chapter 3 Sec 3.1 Lines and Angles

Vocabulary Two lines are parallel lines if they are coplanar and do not intersect. Lines that do not intersect and are not coplanar are called skew lines. Two planes that do not intersect are called parallel planes.

Transversals A transversal is a line that intersects two or more coplanar lines at different points. transversal

Corresponding Angles Two angles are corresponding angles if they occupy corresponding positions. Example: 1 and 5 and 4 and 8 1 2 3 4 5 6 7 8

Alternate Exterior Angles Two angles are alternate exterior angles if they lie outside the two lines on the opposite sides of the transversal. Example: 1 and 8. 1 2 3 4 5 6 7 8

Alternate Interior Angles Two angles are alternate interior angles if they lie between the two lines on opposite sides of the transversal. Example: 3 and 6. 1 2 3 4 5 6 7 8

Consecutive Angles or Same Side Interior Angles Two angles are consecutive angles if they lie between the two lines on the same side of the transversal. Example: 3 and 5. 1 2 3 4 5 6 7 8

Vertical and Linear Pairs are still possible, 1 2 3 4 5 6 7 8

H.W. Pg 132 #1-17, 21-26 all and WS packet