Physics 207: Lecture 10, Pg 1 Lecture 10 l Goals: Employ Newtons Laws in 2D problems with circular motion Assignment: HW5, (Chapters 8 & 9, due 3/4, Wednesday)

Slides:



Advertisements
Similar presentations
Uniform Circular Motion
Advertisements

Chapter 8: Dynamics II: Motion in a Plane
CHAPTER-6 Force and Motion-II.
Physics 111: Mechanics Lecture 5
Newton’s Laws + Circular Motion. Sect. 5-2: Uniform Circular Motion; Dynamics A particle moving in uniform circular motion at radius r, speed v = constant:
Uniform Circular Motion
Chapter 10. Uniform Circular Motion
Chapter 6: Circular Motion & Other Applications of Newton’s Laws
Physics 101: Lecture 8, Pg 1 Centripetal Acceleration and Circular Motion Physics 101: Lecture 08 l Today’s lecture will cover Chapter 5 Exam II Problems.
Physics 207: Lecture 7, Pg 1 Physics 207, Lecture 7, Sept. 25 Agenda: Assignment: l WebAssign Problem Set 3 due Tuesday midnight l MidTerm Thursday, Oct.
As the ball revolves faster, the angle increases
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Physics 151: Lecture 10, Pg 1 Physics 151: Lecture 10 l Homework #3 (9/22/06, 5 PM) from Chapter 5 Today’s Topics: çExample with a pulley and kinetic çStatic.
Physics 151: Lecture 11, Pg 1 Physics 151: Lecture 11 l Homework #4 (10/2/06, 5 PM) : Problems from Ch.6 on the webassign l Topics çReview: Forces and.
Centripetal Force. Law of Action in Circles  Motion in a circle has a centripetal acceleration.  For every acceleration there is a net force.  There.
Copyright © 2009 Pearson Education, Inc. Lecture 4 Circular Motion 1.
Circular Motion and Other Applications of Newton’s Laws
Physics 101: Lecture 10, Pg 1 Physics 101: Lecture 10 Application of Newton's Laws l New Material: Textbook Chapter 5 è Circular Motion & Centripetal Acceleration.
CIRCULAR MOTION We will be looking at a special case of kinematics and dynamics of objects in uniform circular motion (constant speed) Cars on a circular.
Circular Motion and Other Applications of Newton’s Laws
Circular Motion.
Circular Motion and Other Applications of Newton’s Laws
Demo spin stopper Is it accelerating? Does it have F net ? Direction of F net ? What causes F net ? Direction of F net ? Is tension doing work?
Dynamics: Circular Motion
Example 1: A 3-kg rock swings in a circle of radius 5 m
Physics 201: Lecture 19, Pg 1 Lecture 19 Goals: Specify rolling motion (center of mass velocity to angular velocity Compare kinetic and rotational energies.
CIRCULAR MOTION.
Chapter 6 Circular Motion and Other Applications of Newton’s Laws.
1 5.2 Uniform Circular Motion A force,, is directed toward the center of the circle This force is associated with an acceleration, a c Applying Newton’s.
Forces of Friction When an object is in motion on a surface or through a viscous medium, there will be a resistance to the motion This is due to the interactions.
ROTATIONAL MOTION Uniform Circular Motion
Uniform Circular Motion. Motion in a Circle Revolution: If entire object is moving in a circle around an external point. The earth revolves around the.
12/9 Circular Motion Text: Chapter 5 Circular Motion
CHAPTER 6 : CIRCULAR MOTION AND OTHER APPLICATIONS OF NEWTON’S LAWS
Motion, Forces and Energy Lecture 5: Circles and Resistance m FrFr FrFr m FrFr A particle moving with uniform speed v in a circular path of radius r experiences.
Chapter 5 Circular Motion; Gravitation. Centripetal Acceleration Centripetal means “Center Seeking” and the centripetal force on an object moving in a.
Lecture 10 Employ Newton’s Laws in 2D problems with circular motion 1.
Physics 203 – College Physics I Department of Physics – The Citadel Physics 203 College Physics I Fall 2012 S. A. Yost Chapter 5 Circular Motion, Universal.
Uniform Circular Motion. Motion of an object moving in a circle at constant speed. Motion of an object moving in a circle at constant speed. The linear.
Circular Motion. Rotating Turning about an internal axis Revolving Turning about an external axis.
Ch. 6: Circular Motion & Other Applications of Newton’s Laws
Uniform Circular Motion Centripetal forces keep these children moving in a circular path.
Centripetal Acceleration and Circular Motion. A B C Answer: B v Circular Motion A ball is going around in a circle attached to a string. If the string.
Physics 207: Lecture 11, Pg 1 Lecture 11 l Goals:  Employ Newton’s Laws in 2D problems with circular motion  Relate Forces with acceleration Assignment:
Physics 207: Lecture 10, Pg 1 Lecture 10 l Goals:  Exploit Newton’s 3 rd Law in problems with friction  Employ Newton’s Laws in 2D problems with circular.
Circular Motion Part 2 By: Heather Britton. Circular Motion Part 2 According to Newton’s 2nd Law, an accelerating body must have a force acting on it.
Circular Motion. Rotating Turning about an internal axis Revolving Turning about an external axis.
Chapter 6.2. Uniform Circular Motion Centripetal forces keep these children moving in a circular path.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Lecture 10 Goals Describe Friction
Physics 101: Lecture 8, Pg 1 Centripetal Acceleration and Circular Motion Physics 101: Lecture 08 l Today’s lecture will cover Chapter 5.
5.5 Non-uniform circular motion 5.6 Drag Velocity
Physics 207, Lecture 8, Oct. 1 Agenda:
Chapter 6 Circular Motion and Other Applications of Newton’s Laws EXAMPLES.
PHY 151: Lecture 6B 6.3 Extending Particle in Uniform Circular Motion Model (Continued)
Physics 1501: Lecture 9, Pg 1 Physics 1501: Lecture 9 l Announcements çHomework #3 : due next Monday çBut HW 04 will be due the following Friday (same.
Centripetal Acceleration and Circular Motion
Non-Uniform circular motion
Physics 101: Lecture 08 Exam 2 Centripetal Acceleration and Circular Motion Exam 1 Review session Tuesday 9-10AM 144Loomis.
Uniform Circular Motion
Vertical Circular Motion
Circular Motion and Other Applications of Newton’s Laws
Centripetal Acceleration and Circular Motion
Lecture 11 Goals: Employ Newton’s Laws in 2D problems with circular motion Relate Forces with acceleration Assignment: HW5, (Chapter 7, 8 and 9 due.
Centripetal forces keep these children moving in a circular path.
Lecture 10 Employ Newton’s Laws in 2D problems with circular motion
Lecture 11 Goals Forces in circular motion Introduce concept of work
Vertical Circular Motion
Lecture 11 Goals: Employ Newton’s Laws in 2D problems with circular motion Relate Forces with acceleration Assignment: HW5, (Chapter 7, 8 and 9 due.
Circular Motion and Other Applications of Newton’s Laws
Presentation transcript:

Physics 207: Lecture 10, Pg 1 Lecture 10 l Goals: Employ Newtons Laws in 2D problems with circular motion Assignment: HW5, (Chapters 8 & 9, due 3/4, Wednesday) For Tuesday: Finish reading Chapter 8, start Chapter 9.

Physics 207: Lecture 10, Pg 2 Uniform Circular Motion For an object moving along a curved trajectory, with non-uniform speed a = a r (radial only) arar v |a r |= vT2vT2 r Perspective is important

Physics 207: Lecture 10, Pg 3 Non-uniform Circular Motion For an object moving along a curved trajectory, with non-uniform speed a = a r + a t (radial and tangential) arar atat dt d| | v |a T |= |a r |= vT2vT2 r

Physics 207: Lecture 10, Pg 4 Circular motion l Circular motion implies one thing |a radial | =v T 2 / r

Physics 207: Lecture 10, Pg 5 Key steps l Identify forces (i.e., a FBD) l Identify axis of rotation l Apply conditions (position, velocity, acceleration)

Physics 207: Lecture 10, Pg 6 Example The pendulum Consider a person on a swing: When is the tension on the rope largest? And at that point is it : (A) greater than (B) the same as (C) less than the force due to gravity acting on the person? axis of rotation

Physics 207: Lecture 10, Pg 7 Example Gravity, Normal Forces etc. vTvT mgmg T at bottom of swing v T is max F r = m a c = m v T 2 / r = T - mg T = mg + m v T 2 / r T > mg mgmg T at top of swing v T = 0 F r = m 0 2 / r = 0 = T – mg cos T = mg cos T < mg axis of rotation y x

Physics 207: Lecture 10, Pg 8 Conical Pendulum (very different) l Swinging a ball on a string of length L around your head (r = L sin ) axis of rotation F r = ma r = T sin F z = 0 = T cos – mg so T = mg / cos (> mg) ma r = mg sin / cos a r = g tan v T 2 /r v T = (gr tan ) ½ Period: t = 2 r / v T =2 (r cot /g) ½

Physics 207: Lecture 10, Pg 9 A match box car is going to do a loop-the-loop of radius r. What must be its minimum speed v t at the top so that it can manage the loop successfully ? Loop-the-loop 1

Physics 207: Lecture 10, Pg 10 To navigate the top of the circle its tangential velocity v T must be such that its centripetal acceleration at least equals the force due to gravity. At this point N, the normal force, goes to zero (just touching). Loop-the-loop 1 F r = ma r = mg = mv T 2 /r v T = (gr) 1/2 mgmg vTvT

Physics 207: Lecture 10, Pg 11 The match box car is going to do a loop-the-loop. If the speed at the bottom is v B, what is the normal force, N, at that point? Hint: The car is constrained to the track. Loop-the-loop 2 mgmg v N F r = ma r = mv B 2 /r = N - mg N = mv B 2 /r + mg

Physics 207: Lecture 10, Pg 12 Once again the car is going to execute a loop-the-loop. What must be its minimum speed at the bottom so that it can make the loop successfully? This is a difficult problem to solve using just forces. We will skip it now and revisit it using energy considerations later on… Loop-the-loop 3

Physics 207: Lecture 10, Pg 13 Example Problem Swinging around a ball on a rope in a nearly horizontal circle over your head. Eventually the rope breaks. If the rope breaks at 64 N, the balls mass is 0.10 kg and the rope is 0.10 m How fast is the ball going when the rope breaks? (neglect mg contribution, 1 N << 40 N) (mg = 1 N) T = 40 N F r = m v T 2 / r T v T = (r F r / m) 1/2 v T = (0.10 x 64 / 0.10) 1/2 m/s v T = 8 m/s

Physics 207: Lecture 10, Pg 14 Example, Circular Motion Forces with Friction (recall ma r = m |v T | 2 / r F f s N ) l How fast can the race car go? (How fast can it round a corner with this radius of curvature?) m car = 1600 kg S = 0.5 for tire/road r = 80 m g = 10 m/s 2 r

Physics 207: Lecture 10, Pg 15 l Only one force is in the horizontal direction: static friction x-dir: F r = ma r = -m |v T | 2 / r = F s = - s N (at maximum) y-dir: ma = 0 = N – mg N = mg v T = ( s m g r / m ) 1/2 v T = ( s g r ) 1/2 = ( x 10 x 80) 1/2 v T = 20 m/s Example N mgmg FsFs m car = 1600 kg S = 0.5 for tire/road r = 80 m g = 10 m/s 2 y x

Physics 207: Lecture 10, Pg 16 A horizontal disk is initially at rest and very slowly undergoes constant angular acceleration. A 2 kg puck is located a point 0.5 m away from the axis. At what angular velocity does it slip (assuming a T << a r at that time) if s =0.8 ? l Only one force is in the horizontal direction: static friction x-dir: F r = ma r = -m |v T | 2 / r = F s = - s N (at ) y-dir: ma = 0 = N – mg N = mg v T = ( s m g r / m ) 1/2 v T = ( s g r ) 1/2 = ( x 10 x 0.5) 1/2 v T = 2 m/s = v T / r = 4 rad/s Another Example m puck = 2 kg S = 0.8 r = 0.5 m g = 10 m/s 2 y x N mgmg FsFs

Physics 207: Lecture 10, Pg 17 UCM: Acceleration, Force, Velocity F a v

Physics 207: Lecture 10, Pg 18 Zero Gravity Ride A rider in a 0 gravity ride finds herself stuck with her back to the wall. Which diagram correctly shows the forces acting on her?

Physics 207: Lecture 10, Pg 19 Banked Curves In the previous car scenario, we drew the following free body diagram for a race car going around a curve on a flat track. n mgmg FfFf What differs on a banked curve?

Physics 207: Lecture 10, Pg 20 Banked Curves Free Body Diagram for a banked curve. Use rotated x-y coordinates Resolve into components parallel and perpendicular to bank N mgmg FfFf For very small banking angles, one can approximate that F f is parallel to ma r. This is equivalent to the small angle approximation sin = tan, but very effective at pushing the car toward the center of the curve!! marmar xx xx y

Physics 207: Lecture 10, Pg 21 Banked Curves, Testing your understanding Free Body Diagram for a banked curve. Use rotated x-y coordinates Resolve into components parallel and perpendicular to bank N mgmg FfFf At this moment you press the accelerator and, because of the frictional force (forward) by the tires on the road you accelerate in that direction. How does the radial acceleration change? marmary x

Physics 207: Lecture 10, Pg 22 Locomotion: how fast can a biped walk?

Physics 207: Lecture 10, Pg 23 How fast can a biped walk? What about weight? (a)A heavier person of equal height and proportions can walk faster than a lighter person (b)A lighter person of equal height and proportions can walk faster than a heavier person (c)To first order, size doesnt matter

Physics 207: Lecture 10, Pg 24 How fast can a biped walk? What about height? (a)A taller person of equal weight and proportions can walk faster than a shorter person (b)A shorter person of equal weight and proportions can walk faster than a taller person (c)To first order, height doesnt matter

Physics 207: Lecture 10, Pg 25 How fast can a biped walk? What can we say about the walkers acceleration if there is UCM (a smooth walker) ? Acceleration is radial ! So where does it, a r, come from? (i.e., what external forces are on the walker?) 1. Weight of walker, downwards 2. Friction with the ground, sideways

Physics 207: Lecture 10, Pg 26 How fast can a biped walk? What can we say about the walkers acceleration if there is UCM (a smooth walker) ? Acceleration is radial ! So where does it, a r, come from? (i.e., what external forces are on the walker?) 1. Weight of walker, downwards 2. Friction with the ground, sideways

Physics 207: Lecture 10, Pg 27 How fast can a biped walk? What can we say about the walkers acceleration if there is UCM (a smooth walker) ? Acceleration is radial ! So where does it, a r, come from? (i.e., what external forces are on the walker?) 1. Weight of walker, downwards 2. Friction with the ground, sideways (most likely from back foot, no tension along the red line) 3. Need a normal force as well

Physics 207: Lecture 10, Pg 28 How fast can a biped walk? What can we say about the walkers acceleration if there is UCM (a smooth walker) ? Acceleration is radial ! So where does it, a r, come from? (i.e., what external forces are on the walker?) 1. Weight of walker, downwards 2. Friction with the ground, sideways (Notice the new direction)

Physics 207: Lecture 10, Pg 29 How fast can a biped walk? Given a model then what does the physics say? Choose a position with the simplest constraints. If his radial acceleration is greater than g then he is in orbit F r = m a r = m v 2 / r < mg Otherwise you will lose contact! a r = v 2 / r v max = (gr) ½ v max ~ 3 m/s ! (And it pays to be tall and live on Jupiter)

Physics 207: Lecture 10, Pg 30 Orbiting satellites v T = (gr) ½

Physics 207: Lecture 10, Pg 31 Geostationary orbit

Physics 207: Lecture 10, Pg 32 Geostationary orbit l The radius of the Earth is ~6000 km but at km you are ~42000 km from the center of the earth. l F gravity is proportional to r -2 and so little g is now ~10 m/s 2 / 50 n v T = (0.20 * ) ½ m/s = 3000 m/s At 3000 m/s, period T = 2 r / v T = / 3000 sec = = sec = s/ 3600 s/hr = 24 hrs l Orbit affected by the moon and also the Earths mass is inhomogeneous (not perfectly geostationary) l Great for communication satellites (1 st pointed out by Arthur C. Clarke)