Heterozygous Mutations in OAS1 Cause Infantile-Onset Pulmonary Alveolar Proteinosis with Hypogammaglobulinemia  Kazutoshi Cho, Masafumi Yamada, Kazunaga.

Slides:



Advertisements
Similar presentations
Volume 10, Issue 8, Pages (August 2002)
Advertisements

Structure of the Rho Family GTP-Binding Protein Cdc42 in Complex with the Multifunctional Regulator RhoGDI  Gregory R. Hoffman, Nicolas Nassar, Richard.
The 1.4 Å Crystal Structure of Kumamolysin
Volume 13, Issue 6, Pages (March 2004)
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Volume 10, Issue 8, Pages (August 2002)
Energetic Pathway Sampling in a Protein Interaction Domain
Beyond the “Recognition Code”
Volume 5, Issue 1, Pages (January 1997)
Volume 124, Issue 2, Pages (January 2006)
Modular Recognition of RNA by a Human Pumilio-Homology Domain
Xiaojing He, Yi-Chun Kuo, Tyler J. Rosche, Xuewu Zhang  Structure 
Tom Huxford, De-Bin Huang, Shiva Malek, Gourisankar Ghosh  Cell 
Volume 16, Issue 10, Pages (October 2008)
Jean–Michel Pawlotsky, Stéphane Chevaliez, John G. McHutchison 
Po-Chao Wen, Emad Tajkhorshid  Biophysical Journal 
Volume 36, Issue 4, Pages (November 2009)
Figure 2 The p.Lys33Gln mutation eliminates a conserved salt bridge interaction of the matrix network The p.Lys33Gln mutation eliminates a conserved salt.
Volume 24, Issue 1, Pages (October 2006)
Volume 15, Issue 1, Pages (January 2007)
Catalytic Center Assembly of HPPK as Revealed by the Crystal Structure of a Ternary Complex at 1.25 Å Resolution  Jaroslaw Blaszczyk, Genbin Shi, Honggao.
Volume 10, Issue 1, Pages (January 2003)
Volume 108, Issue 1, Pages (January 2002)
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Volume 4, Issue 5, Pages (November 1999)
Volume 16, Issue 10, Pages (October 2008)
Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis  Marcin Nowotny, Sergei A. Gaidamakov, Robert.
Crystal Structure of a Y-Family DNA Polymerase in Action
The 1.9 Å Structure of α-N-Acetylgalactosaminidase
Crystal Structure of Recombinant Human Interleukin-22
Volume 18, Issue 2, Pages (April 2005)
Volume 9, Issue 8, Pages (August 2001)
Daniel Peisach, Patricia Gee, Claudia Kent, Zhaohui Xu  Structure 
Volume 9, Issue 12, Pages (December 2001)
Volume 14, Issue 5, Pages (May 2006)
Volume 15, Issue 2, Pages (February 2007)
Jiao Yang, Melesse Nune, Yinong Zong, Lei Zhou, Qinglian Liu  Structure 
Volume 14, Issue 2, Pages (April 2004)
Yi Mo, Benjamin Vaessen, Karen Johnston, Ronen Marmorstein 
The basis for K-Ras4B binding specificity to protein farnesyl-transferase revealed by 2 Å resolution ternary complex structures  Stephen B Long, Patrick.
Volume 6, Issue 1, Pages (July 2000)
Crystal Structure of a Phosphoinositide Phosphatase, MTMR2
What Does It Take to Bind CAR?
Meigang Gu, Kanagalaghatta R. Rajashankar, Christopher D. Lima 
Volume 14, Issue 4, Pages (April 2006)
Structure of the Rho Family GTP-Binding Protein Cdc42 in Complex with the Multifunctional Regulator RhoGDI  Gregory R. Hoffman, Nicolas Nassar, Richard.
Min Wang, Mary Prorok, Francis J. Castellino  Biophysical Journal 
Volume 52, Issue 3, Pages (November 2013)
X-Linked Dominant Scapuloperoneal Myopathy Is Due to a Mutation in the Gene Encoding Four-and-a-Half-LIM Protein 1  Catarina M. Quinzii, Tuan H. Vu, K.
Jeffrey J. Wilson, Rhett A. Kovall  Cell 
How glutaminyl-tRNA synthetase selects glutamine
Volume 7, Issue 8, Pages (August 1999)
Volume 34, Issue 3, Pages (May 2009)
Crystal Structure of the N-Terminal Domain of Sialoadhesin in Complex with 3′ Sialyllactose at 1.85 Å Resolution  A.P. May, R.C. Robinson, M. Vinson,
Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with an Unusual Mode of Binding  David J. Sidote, Christopher.
Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis  Marcin Nowotny, Sergei A. Gaidamakov, Robert.
Volume 16, Issue 11, Pages (November 2008)
Mutations in POLR3A and POLR3B Encoding RNA Polymerase III Subunits Cause an Autosomal-Recessive Hypomyelinating Leukoencephalopathy  Hirotomo Saitsu,
Volume 20, Issue 1, Pages (January 2012)
Volume 6, Issue 8, Pages (August 1998)
Volume 12, Issue 11, Pages (November 2004)
Structure of an IκBα/NF-κB Complex
Three protein kinase structures define a common motif
Insights from Free-Energy Calculations: Protein Conformational Equilibrium, Driving Forces, and Ligand-Binding Modes  Yu-ming M. Huang, Wei Chen, Michael J.
Structural Insights into RIP3-Mediated Necroptotic Signaling
Volume 7, Issue 2, Pages R19-R23 (February 1999)
The 1.4 Å Crystal Structure of Kumamolysin
Crystal Structure of Escherichia coli RNase D, an Exoribonuclease Involved in Structured RNA Processing  Yuhong Zuo, Yong Wang, Arun Malhotra  Structure 
Volume 13, Issue 6, Pages (March 2004)
Morgan Huse, Ye-Guang Chen, Joan Massagué, John Kuriyan  Cell 
Presentation transcript:

Heterozygous Mutations in OAS1 Cause Infantile-Onset Pulmonary Alveolar Proteinosis with Hypogammaglobulinemia  Kazutoshi Cho, Masafumi Yamada, Kazunaga Agematsu, Hirokazu Kanegane, Noriko Miyake, Masahiro Ueki, Takuma Akimoto, Norimoto Kobayashi, Satoru Ikemoto, Mishie Tanino, Atsushi Fujita, Itaru Hayasaka, Satoshi Miyamoto, Mari Tanaka-Kubota, Koh Nakata, Masaaki Shiina, Kazuhiro Ogata, Hisanori Minakami, Naomichi Matsumoto, Tadashi Ariga  The American Journal of Human Genetics  Volume 102, Issue 3, Pages 480-486 (March 2018) DOI: 10.1016/j.ajhg.2018.01.019 Copyright © 2018 American Society of Human Genetics Terms and Conditions

Figure 1 OAS1 Variants in Three Families with PAP and Evolutionary Conservation and Variations in OAS1 (A–C) Genetic analysis for OAS1 variation. Sanger sequencing demonstrated variations of (A) c.227C>T (p.Ala76Val) in family A, (B) c.326G>A (p.Cys109Tyr) in family B, and (C) c.592C>G (p.Leu198Val) in family C. Black arrows show the positions of the variations. (D) Schematic representation of OAS1 mutations. Black circles indicate the variants identified in this study. Blue and red triangles indicate metal binding sites (Asp75, Asp77, and Asp148) and ATP binding sites (Ser63, Lys213, and Gln229), respectively. Green and yellow boxes show the nucleotidyltransferase (NTP_transf_2) domain and 2′,5′-oligoadenylate synthetase 1, domain 2, and C terminus (OAS1_C) domain, respectively, predicted using the SMART program (see Web Resources). (E) Evolutionary conservation of Ala76, Cys109, and Leu198 amino acids in human OAS1. These amino acids are highlighted in green. Six orthologous sequences were aligned using the multiple sequence alignment program, Clustal Omega (see Web Resources). The American Journal of Human Genetics 2018 102, 480-486DOI: (10.1016/j.ajhg.2018.01.019) Copyright © 2018 American Society of Human Genetics Terms and Conditions

Figure 2 Impact of the Identified Variants on Protein Structure (A) Mapping of the mutations on the crystal structures of a double-stranded RNA (dsRNA)-bound form of human oligoadenylate synthetase 1 (hOAS1) and an apo form of porcine OAS1 (pOAS1) (PDB: 4ig8 and 1px5, respectively). The superimposed structures of the dsRNA-bound (cyan) and apo (green) forms of OAS1 are presented as ribbon diagrams. The stick model is shown in gray. The altered residues are shown as van der Waals spheres in blue and dark green in the dsRNA-bound and apo forms, respectively. The substrate analog, 2′-deoxy ATP (dATP), and magnesium ions are shown as orange sticks and purple balls, respectively. Close-up views around the mutation sites are shown separately for the dsRNA-bound and apo forms. In the close-up views, some side chains of the hydrophobic residues around the mutation sites are shown as translucent spheres. (B) The free energy changes associated with each variant in a dsRNA-bound form of hOAS1 and apo form of pOAS1 by the FoldX software are shown. The American Journal of Human Genetics 2018 102, 480-486DOI: (10.1016/j.ajhg.2018.01.019) Copyright © 2018 American Society of Human Genetics Terms and Conditions