MAXDOAS horizontal (averaging) effects

Slides:



Advertisements
Similar presentations
Validation of SCIA’s reflectance and polarisation (Acarreta, de Graaf, Tilstra, Stammes, Krijger ) Envisat Validation Workshop, Frascati, 9-13 December.
Advertisements

 nm)  nm) PurposeSpatial Resolution (km) Ozone, SO 2, UV8 3251Ozone8 3403Aerosols, UV, and Volcanic Ash8 3883Aerosols, Clouds, UV and Volcanic.
Atmospheric Optics - I. Recap Condensation above the Earth surface produces clouds. Clouds are divided into 4 main groups: ♦ High ♦ Middle ♦ Low ♦ Clouds.
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Institute.
10/05/041 Utilisation of satellite data in the verification of HIRLAM cloud forecasts Christoph Zingerle and Pertti Nurmi.
A 21 F A 21 F Parameterization of Aerosol and Cirrus Cloud Effects on Reflected Sunlight Spectra Measured From Space: Application of the.
Page 1 1 of 21, 28th Review of Atmospheric Transmission Models, 6/14/2006 A Two Orders of Scattering Approach to Account for Polarization in Near Infrared.
Institute for Environmental Physics and Remote Sensing (IUP/ife) Physics/Electrical Engineering 1 K.-U. Eichmann, C. von Savigny, G. Rohen, J. Kaiser,
Mexican activities with regard to TEMPO Michel Grutter, Josue Arellano, Alejandro Bezanilla, Martina Friedrich, Arne Kruger, Claudia Rivera and Wolfgang.
Remote-sensing of the environment (RSE) ATMOS Analysis of the Composition of Clouds with Extended Polarization Techniques L. Pfitzenmaier, H. Russchenbergs.
1. The MPI MAX-DOAS inversion scheme 2. Cloud classification 3. Results: Aerosol OD: Correlation with AERONET Surface extinction: Correlation with Nephelometer.
Deriving vertical profiles of free tropospheric trace gases from ground based measurements: Implications for oxidation of atmospheric mercury Sean Coburn.
MAXDOAS formaldehyde slant column measurements during CINDI: intercomparison and analysis improvement G. Pinardi, M. Van Roozendael, N. Abuhassan, C. Adams,
ICDC7, Boulder, September 2005 CH 4 TOTAL COLUMNS FROM SCIAMACHY – COMPARISON WITH ATMOSPHERIC MODELS P. Bergamaschi 1, C. Frankenberg 2, J.F. Meirink.
Atmospheric Monitoring in the TA experiment
Validation of a Satellite Retrieval of Tropospheric Nitrogen Dioxide Randall Martin Dalhousie University Smithsonian Astrophysical Observatory Daniel Jacob.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
Elena Spinei and George Mount Washington State University 1 CINDI workshop March 2010.
 Expectations 2004  Achievements  Summary + Outlook AT-2 Task Group 1 Progress Thomas Wagner.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC.
Observations of Formaldehyde and Related Atmospheric Species Using Multi-Axis Spectroscopy Christopher P. Beekman and Dr. Heather C. Allen Department of.
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
SCIAMACHY satellite validation during the field campaigns CINDI and TRANSBROM Enno Peters, Folkard Wittrock, Andreas Richter, Mark Weber and John P. Burrows.
UV Aerosol Indices from (TROP)OMI An investigation of viewing angle dependence , Marloes Penning de Vries and Thomas Wagner Max Planck Institute.
CINDI – Profiling by Tim Hay. Read DSCD or SCD file Write SZAs, SAzs, elevations, & viewing Azs to geometry file for RT Read prescribed profiles and settings:
BBC Workshop DeBilt, 18.–19. October 2004 Reconstruction of three dimensional cloud fields from two dimensional input datasets Klemens Barfus & Franz H.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Satellite group MPI Mainz Investigating Global Long-term Data Sets of the Atmospheric H 2 O VCD and of Cloud Properties.
Kenneth Pickering (NASA GSFC), Lok Lamsal (USRA, NASA GSFC), Christopher Loughner (UMD, NASA GSFC), Scott Janz (NASA GSFC), Nick Krotkov (NASA GSFC), Andy.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
MAX-DOAS observations and their application to validations of satellite and model data in Wuxi, China 1) Satellite group, Max Planck institute for Chemistry,
Comparison of OMI NO 2 with Ground-based Direct Sun Measurements at NASA GSFC and JPL Table Mountain during Summer 2007 George H. Mount & Elena Spinei.
Plans to study horizontal NO 2 distribution Ankie Piters, Tim Vlemmix, KNMI data from: INTA, IUPB, JAMSTEC, KNMI, Leicester, NASA Objectives: –Satellite.
Retrieval of Vertical Columns of Sulfur Dioxide from SCIAMACHY and OMI: Air Mass Factor Algorithm Development, Validation, and Error Analysis Chulkyu Lee.
Weighting functions (Box AMFs) for Limb measurements of stratospheric trace species using 3D Monte Carlo RTM Christoph v. Friedeburg, A. Butz, F. Weidner,
 4-azimuth MAX-DOAS measurements in Mainz  Characterisation of the information content using 3D RTM MAXDOAS horizontal (averaging) effects MPI for Chemistry.
1 Examining Seasonal Variation of Space-based Tropospheric NO 2 Columns Lok Lamsal.
Study on NO x lifetime in chemistry transport model Ran Yin.
ACKNOWLEDGEMENTS: Rob Albee, Jim Wendell, Stan Unander, NOAA Climate Forcing program, DOE ARM program, NASA, Met. Service Canada, Chinese Met. Agency,
Measurements of pollutants and their spatial distributions over the Los Angeles Basin Ross Cheung1,2, Olga Pikelnaya1,2, Catalina Tsai1, Jochen Stutz1,2,
 Methodology  Comparison with others instruments  Impact of daily AMF  Conclusions Tropospheric NO 2 from SAOZ F. Goutail, A. Pazmino, A. Griesfeller,
MAXDOAS observations in Beijing G. Pinardi, K. Clémer, C. Hermans, C. Fayt, M. Van Roozendael BIRA-IASB Pucai Wang & Jianhui Bai IAP/CAS 24 June 2009,
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
EOS-AURA Science Team Meeting September 2009, Leiden Comparison of NO 2 profiles derived from MAX-DOAS measurements and model simulations.
TEMPO Validation Capabilities Pandora NO 2 Total and tropospheric columns of NO2 from direct sun measurements -> column along a narrow cone (0.5 o ), actual.
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
Status of ongoing Kiruna site Myojeong Gu, Thomas Wagner MPI for Chemistry, Mainz, Germany 1.
MPI for Chemistry, Mainz, Germany BIRA/IASB, Brussels, Belgium University of Colorado, Boulder, USA CAS Hefei, China CAMS Beijing, China University of.
First results of the aerosol profiling group IUP Heidelberg BIRA-IASB MPIC Mainz IUP Bremen JAMSTEC WSU KNMI NIWA Univ. Leicester PSI TNO RIVM KNMI.
MAX-DOAS observations of tropospheric aerosols and formaldehyde above China Tim Vlemmix Francois Hendrick Michel Van Roozendael Isabelle De Smedt Katrijn.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC.
DOAS workshop 2015, Brussels, July 2015
Aerosol retrieval from spectral measurements in twilight conditions: ground-based and satellite-based cases Nina Mateshvili (1), Didier Fussen (1), Giuli.
Intercomparison of HONO SCDs and profiles from MAX-DOAS observations during the MAD-CAT campaign and comparison to chemical model simulations Yang Wang,
N. Bousserez, R. V. Martin, L. N. Lamsal, J. Mao, R. Cohen, and B. R
Julia Remmers1, Thomas Wagner1
GEOGRAPHIC INFORMATION SYSTEMS & RS INTERVIEW QUESTIONS ANSWERS
Bruchkouski I. , Krasouski A. , Dziomin V. , Svetashev A. G
DCC method implementation in FY3/MERSI and FY2
Challenges/Opportunities with mobile (car/airborne) DOAS
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC Height-resolved aerosol R.Siddans.
Yang Wang (1, 2), Thomas Wagner (1), Pinhua Xie (2), Julia Remmers (1), Ang Li (2), Johannes Lampel (3, 1), Udo Friess (3), Enno.Peters (4), Folkard Wittrock.
Deep Convective Cloud BRDF characterization using PARASOL
Modelling the radiative impact of aerosols from biomass burning during SAFARI-2000   Gunnar Myhre, Terje K. Berntsen, James M. Haywood, Jostein K. Sundet,
The radiative properties of inhomogeneous cirrus clouds
Effects of 3D radiation on cloud evolution
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
MAX-DOAS#1, North Direction
Cloud trends from GOME, SCIAMACHY and OMI
Presentation transcript:

MAXDOAS horizontal (averaging) effects MPI for Chemistry (MPIC), Mainz, Germany T. Wagner, J. Remmers, S. Beirle  4-azimuth MAX-DOAS measurements in Mainz  Characterisation of the information content using 3D RTM Master Thesis, Julia Remmers

Comparison of the Telescopes (5°) NO2 DSCDs

Gradient plots (1) Measurement for the horizontal variability Possibility to detect sources

Gradient plots (2) NO2 DSCDs N W E S

Gradient plots (3)

3D, spherical Monte Carlo RTM MCARTIM, Tim Deutschmann - 1D, 2D, 3D Box AMF Visualisation of a Monte-Carlo radiative transfer simulation (yellow: surface reflection, red: Rayleigh scattering, green: particle scattering)

Box AMF 0-1km, 500nm, no aerosols horizontal grid: 8 km x 8km vertical grid: 100m 10 km SZA: 70° 5 km MAX-DOAS elevation: 1° 0 km -200 km 0 km 200 km

Box AMF 0-1km, 360nm, no aerosols horizontal grid: 8 km x 8km vertical grid: 100m 10 km SZA: 70° 5 km MAX-DOAS elevation: 1° 0 km -200 km 0 km 200 km

Box AMF 0-1km, 360nm, aerosols 1-1km, OD 0.5 horizontal grid: 8 km x 8km vertical grid: 100m 10 km SZA: 70° 5 km MAX-DOAS elevation: 1° 0 km -200 km 0 km 200 km

Box AMF 0-1km, 360nm, no aerosols horizontal grid: 8 km x 8km vertical grid: 100m 10 km SZA: 70° 5 km MAX-DOAS elevation: 1° 0 km -200 km 0 km 200 km

Box AMF 0-1km, 360nm, no aerosols horizontal grid: 8 km x 8km vertical grid: 100m 10 km SZA: 70° 5 km MAX-DOAS elevation: 2° 0 km -200 km 0 km 200 km

Box AMF 0-1km, 360nm, no aerosols horizontal grid: 8 km x 8km vertical grid: 100m 10 km SZA: 70° 5 km MAX-DOAS elevation: 5° 0 km -200 km 0 km 200 km

Box AMF 0-1km, 360nm, no aerosols horizontal grid: 8 km x 8km vertical grid: 100m 10 km SZA: 70° 5 km MAX-DOAS elevation: 10° 0 km -200 km 0 km 200 km

Box AMF 0-1km, 360nm, no aerosols horizontal grid: 8 km x 8km vertical grid: 100m 10 km SZA: 70° 5 km MAX-DOAS elevation: 30° 0 km -200 km 0 km 200 km

Box AMF 0-1km, 360nm, no aerosols horizontal grid: 2km x 2km 50 km 0 km -50 km elevation: 1° SCIA: 30 km x 60 km MAX-DOAS

Box AMF 0-1km, 360nm, no aerosols horizontal grid: 2km x 2km 50 km 0 km -50 km elevation: 1° SCIA: 30 km x 60 km MAX-DOAS

Box AMF 0-1km, 360nm, no aerosols horizontal grid: 2km x 2km 50 km 0 km -50 km elevation: 1° SCIA: 30 km x 60 km MAX-DOAS

Box AMF 0-1km, 500nm, no aerosols horizontal grid: 2km x 2km 50 km 0 km -50 km elevation: 1° SCIA: 30 km x 60 km

Box AMF 0-1km, 500nm, aerosols: 0-1km, OD 0.1 horizontal grid: 2km x 2km 50 km 0 km -50 km elevation: 1° SCIA: 30 km x 60 km

Box AMF 0-1km, 500nm, aerosols: 0-1km, OD 0.2 horizontal grid: 2km x 2km 50 km 0 km -50 km elevation: 1° SCIA: 30 km x 60 km

Box AMF 0-1km, 500nm, aerosols: 0-1km, OD 0.3 horizontal grid: 2km x 2km 50 km 0 km -50 km elevation: 1° SCIA: 30 km x 60 km

Box AMF 0-1km, 500nm, aerosols: 0-1km, OD 0.5 horizontal grid: 2km x 2km 50 km 0 km -50 km elevation: 1° SCIA: 30 km x 60 km

Box AMF 0-1km, 500nm, aerosols: 0-1km, OD 1 horizontal grid: 2km x 2km 50 km 0 km -50 km elevation: 1° SCIA: 30 km x 60 km

Conclusions • Horizontal gradients can be determined from 4-azimuth MAX-DOAS observations => information on location of sources • 3D-distribution of the sensitivity of MAX-DOAS depends strongly on wavelength and aerosol load • horizontal area with box-AMF > 1 ranges typically from ~3 km to ~30 km • spatial resolution of future satellite instruments maches that of MAX-DOAS observations (or is even finer)

Cabauw, 24.06.2009

Cabauw, 21.06.2009

Cabauw, 07.07.2009