Cutnell/Johnson Physics 7th edition

Slides:



Advertisements
Similar presentations
Horizontal Circular Motion
Advertisements

Centripetal Acceleration
ConcepTest 7.1 Tetherball
To students viewing this on shared drive: answers to problems
University Physics: Mechanics
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
1 Unit 6 Part 2 Circular Motion and Force. 2 Circular Motion and Centripetal Acceleration Let us take another look at our Medieval Flail. Why did the.
Uniform Circular Motion
Circular Motion Like Projectile Motion, Circular Motion is when objects move in two directions at the same time.
Dynamics of Uniform Circular Motion Chapter 5. Learning Objectives- Circular motion and rotation Uniform circular motion Students should understand the.
Circular Motion; Gravitation
5.4 highway curves 5.5 Non-uniform circular motion 5.6 Drag Velocity
C H A P T E R 5 Dynamics of Uniform Circular Motion
Centripetal Acceleration 13 Examples with full solutions.
as the force required before you changed the crate’s orientation.
Chapter 7 Tangential Speed
Circular Motion; Gravitation
Circular Motion and Gravitation Can you change your velocity and while not changing your speed? v F Consider the above situation. According to Newton.
1 Ch5 Circular Motion and Force. 2 Centripetal Force - Swinging Ball Any body rotating about a fixed point will experience a centripetal (center seeking)
Romantic Turn You are driving with a “friend” who is sitting to your right on the passenger side of the front seat. You would like to be closer to your.
Dynamics of Uniform Circular Motion
Halliday/Resnick/Walker Fundamentals of Physics
Welcome to Physics JEOPARDY
Rotational Motion and the Law of Gravity
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Circular Motion and Gravitation Chapter 7 Table of Contents Section.
Circular Motion.
AP Physics B I.E Circular Motion and Rotation. I.E.1 Uniform Circular Motion.
Centripetal Force and Acceleration
Circular Motion; Gravitation
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Chapter 7 Circular Motion and Gravitation.
Chapter 5 Circular Motion; Gravitation © 2014 Pearson Education, Inc.
Cutnell/Johnson Physics 7th edition Reading Quiz Questions
Chapter 7 Rotational Motion and the Law of Gravity
CHAPTER 6 : CIRCULAR MOTION AND OTHER APPLICATIONS OF NEWTON’S LAWS
Circular Motion. The Radian Objects moving in circular (or nearly circular) paths are often measured in radians rather than degrees. In the diagram, the.
Uniform Circular Motion
Ch 5. Dynamics of Uniform Circular Motion Uniform circular motion  constant speed & circular path. T = time to travel once around the circle. Example.
Uniform Circular Motion Centripetal forces keep these children moving in a circular path.
Copyright © 2009 Pearson Education, Inc. Chapter 5 Using Newton’s Laws: Friction, Circular Motion, Drag Forces.
Circular Motion; Gravitation
A highway curve has a radius of km and is unbanked
Ch5 Circular Motion and Force
Circular Motion and Gravitation
Uniform Circular Motion
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 5 Circular Motion; Gravitation. 5-1 Kinematics of Uniform Circular Motion Uniform circular motion: motion in a circle of constant radius at constant.
Conceptual Physics Chapter 10
C ENTRIPETAL A CCELERATION. This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion – traveling.
Circular Motion. The Radian Objects moving in circular (or nearly circular) paths are often measured in radians rather than degrees. In the diagram, the.
Chapter 5 Dynamics of Uniform Circular Motion. 5.1 Uniform Circular Motion DEFINITION OF UNIFORM CIRCULAR MOTION Uniform circular motion is the motion.
Chapter 5 Circular Motion © 2014 Pearson Education, Inc.
Dynamics of Uniform Circular Motion
“What is uniform circular motion?” In uniform Circular motion a body travels at a constant speed on a circular path.
Chapter 6 Force and Motion II. Forces of Friction When an object is in motion on a surface or through a viscous medium, there will be a resistance to.
Dynamics of Uniform Circular Motion
Dynamics of Uniform Circular Motion
Centripetal Acceleration
Uniform Circular Motion
Aim: How do we explain centripetal motion?
Recall: Uniform Circular Motion
Circular Motion and Gravitation
Dynamics of Uniform Circular Motion
Chapter 7 Objectives Solve problems involving centripetal force.
Dynamics of Uniform Circular Motion
Dynamics of Uniform Circular Motion
Uniform Circular Motion &
Dynamics of Uniform Circular Motion
Circular Motion and Other Applications of Newton’s Laws
Dynamics of Uniform Circular Motion
Presentation transcript:

Cutnell/Johnson Physics 7th edition Classroom Response System Questions Chapter 5 Dynamics of Uniform Circular Motion Interactive Lecture Questions

5.1.1. An airplane flying at 115 m/s due east makes a gradual turn while maintaining its speed and follows a circular path to fly south. The turn takes 15 seconds to complete. What is the radius of the circular path? a) 410 m b) 830 m c) 1100 m d) 1600 m e) 2200 m

5.1.1. An airplane flying at 115 m/s due east makes a gradual turn while maintaining its speed and follows a circular path to fly south. The turn takes 15 seconds to complete. What is the radius of the circular path? a) 410 m b) 830 m c) 1100 m d) 1600 m e) 2200 m

5.2.1. A ball is whirled on the end of a string in a horizontal circle of radius R at constant speed v. By which one of the following means can the centripetal acceleration of the ball be increased by a factor of two? a) Keep the radius fixed and increase the period by a factor of two. b) Keep the radius fixed and decrease the period by a factor of two. c) Keep the speed fixed and increase the radius by a factor of two. d) Keep the speed fixed and decrease the radius by a factor of two. e) Keep the radius fixed and increase the speed by a factor of two.

5.2.1. A ball is whirled on the end of a string in a horizontal circle of radius R at constant speed v. By which one of the following means can the centripetal acceleration of the ball be increased by a factor of two? a) Keep the radius fixed and increase the period by a factor of two. b) Keep the radius fixed and decrease the period by a factor of two. c) Keep the speed fixed and increase the radius by a factor of two. d) Keep the speed fixed and decrease the radius by a factor of two. e) Keep the radius fixed and increase the speed by a factor of two.

5.2.2. A steel ball is whirled on the end of a chain in a horizontal circle of radius R with a constant period T. If the radius of the circle is then reduced to 0.75R, while the period remains T, what happens to the centripetal acceleration of the ball? a) The centripetal acceleration increases to 1.33 times its initial value. b) The centripetal acceleration increases to 1.78 times its initial value. c) The centripetal acceleration decreases to 0.75 times its initial value. d) The centripetal acceleration decreases to 0.56 times its initial value. e) The centripetal acceleration does not change.

5.2.2. A steel ball is whirled on the end of a chain in a horizontal circle of radius R with a constant period T. If the radius of the circle is then reduced to 0.75R, while the period remains T, what happens to the centripetal acceleration of the ball? a) The centripetal acceleration increases to 1.33 times its initial value. b) The centripetal acceleration increases to 1.78 times its initial value. c) The centripetal acceleration decreases to 0.75 times its initial value. d) The centripetal acceleration decreases to 0.56 times its initial value. e) The centripetal acceleration does not change.

5.2.3. While we are in this classroom, the Earth is orbiting the Sun in an orbit that is nearly circular with an average radius of 1.50 × 1011 m. Assuming that the Earth is in uniform circular motion, what is the centripetal acceleration of the Earth in its orbit around the Sun? a) 5.9 × 103 m/s2 b) 1.9 × 105 m/s2 c) 3.2 × 107 m/s2 d) 7.0 × 102 m/s2 e) 9.8 m/s2

5.2.3. While we are in this classroom, the Earth is orbiting the Sun in an orbit that is nearly circular with an average radius of 1.50 × 1011 m. Assuming that the Earth is in uniform circular motion, what is the centripetal acceleration of the Earth in its orbit around the Sun? a) 5.9 × 103 m/s2 b) 1.9 × 105 m/s2 c) 3.2 × 107 m/s2 d) 7.0 × 102 m/s2 e) 9.8 m/s2

5.3.1. A boy is whirling a stone at the end of a string around his head. The string makes one complete revolution every second, and the tension in the string is FT. The boy increases the speed of the stone, keeping the radius of the circle unchanged, so that the string makes two complete revolutions per second. What happens to the tension in the sting? a) The tension increases to four times its original value. b) The tension increases to twice its original value. c) The tension is unchanged. d) The tension is reduced to one half of its original value. e) The tension is reduced to one fourth of its original value.

5.3.1. A boy is whirling a stone at the end of a string around his head. The string makes one complete revolution every second, and the tension in the string is FT. The boy increases the speed of the stone, keeping the radius of the circle unchanged, so that the string makes two complete revolutions per second. What happens to the tension in the sting? a) The tension increases to four times its original value. b) The tension increases to twice its original value. c) The tension is unchanged. d) The tension is reduced to one half of its original value. e) The tension is reduced to one fourth of its original value.

5.3.2. An aluminum rod is designed to break when it is under a tension of 600 N. One end of the rod is connected to a motor and a 12-kg spherical object is attached to the other end. When the motor is turned on, the object moves in a horizontal circle with a radius of 6.0 m. If the speed of the motor is continuously increased, at what speed will the rod break? Ignore the mass of the rod for this calculation. a) 11 m/s b) 17 m/s c) 34 m/s d) 88 m/s e) 3.0 × 102 m/s

5.3.2. An aluminum rod is designed to break when it is under a tension of 600 N. One end of the rod is connected to a motor and a 12-kg spherical object is attached to the other end. When the motor is turned on, the object moves in a horizontal circle with a radius of 6.0 m. If the speed of the motor is continuously increased, at what speed will the rod break? Ignore the mass of the rod for this calculation. a) 11 m/s b) 17 m/s c) 34 m/s d) 88 m/s e) 3.0 × 102 m/s

5.3.3. A ball is attached to a string and whirled in a horizontal circle. The ball is moving in uniform circular motion when the string separates from the ball (the knot wasn’t very tight). Which one of the following statements best describes the subsequent motion of the ball? a) The ball immediately flies in the direction radially outward from the center of the circular path the ball had been following. b) The ball continues to follow the circular path for a short time, but then it gradually falls away. c) The ball gradually curves away from the circular path it had been following. d) The ball immediately follows a linear path away from, but not tangent to the circular path it had been following. e) The ball immediately follows a line that is tangent to the circular path the ball had been following

5.3.3. A ball is attached to a string and whirled in a horizontal circle. The ball is moving in uniform circular motion when the string separates from the ball (the knot wasn’t very tight). Which one of the following statements best describes the subsequent motion of the ball? a) The ball immediately flies in the direction radially outward from the center of the circular path the ball had been following. b) The ball continues to follow the circular path for a short time, but then it gradually falls away. c) The ball gradually curves away from the circular path it had been following. d) The ball immediately follows a linear path away from, but not tangent to the circular path it had been following. e) The ball immediately follows a line that is tangent to the circular path the ball had been following

5. 3. 4. A rancher puts a hay bail into the back of her SUV 5.3.4. A rancher puts a hay bail into the back of her SUV. Later, she drives around an unbanked curve with a radius of 48 m at a speed of 16 m/s. What is the minimum coefficient of static friction for the hay bail on the floor of the SUV so that the hay bail does not slide while on the curve? a) This cannot be determined without knowing the mass of the hay bail. b) 0.17 c) 0.33 d) 0.42 e) 0.54

5. 3. 4. A rancher puts a hay bail into the back of her SUV 5.3.4. A rancher puts a hay bail into the back of her SUV. Later, she drives around an unbanked curve with a radius of 48 m at a speed of 16 m/s. What is the minimum coefficient of static friction for the hay bail on the floor of the SUV so that the hay bail does not slide while on the curve? a) This cannot be determined without knowing the mass of the hay bail. b) 0.17 c) 0.33 d) 0.42 e) 0.54

5.4.1. The maximum speed at which a car can safely negotiate an unbanked curve depends on all of the following factors except a) the coefficient of kinetic friction between the road and the tires. b) the coefficient of static friction between the road and the tires. c) the acceleration due to gravity. d) the diameter of the curve. e) the ratio of the static frictional force between the road and the tires and the normal force exerted on the car.

5.4.1. The maximum speed at which a car can safely negotiate an unbanked curve depends on all of the following factors except a) the coefficient of kinetic friction between the road and the tires. b) the coefficient of static friction between the road and the tires. c) the acceleration due to gravity. d) the diameter of the curve. e) the ratio of the static frictional force between the road and the tires and the normal force exerted on the car.

5.4.2. A 1000-kg car travels along a straight portion of highway at a constant velocity of 10 m/s, due east. The car then encounters an unbanked curve of radius 50 m. The car follows the curve traveling at a constant speed of 10 m/s while the direction of the car changes from east to south. What is the magnitude of the acceleration of the car as it travels the unbanked curve? a) zero m/s2 b) 2 m/s2 c) 5 m/s2 d) 10 m/s2 e) 20 m/s2

5.4.2. A 1000-kg car travels along a straight portion of highway at a constant velocity of 10 m/s, due east. The car then encounters an unbanked curve of radius 50 m. The car follows the curve traveling at a constant speed of 10 m/s while the direction of the car changes from east to south. What is the magnitude of the acceleration of the car as it travels the unbanked curve? a) zero m/s2 b) 2 m/s2 c) 5 m/s2 d) 10 m/s2 e) 20 m/s2

5.4.3. You are riding in the forward passenger seat of a car as it travels along a straight portion of highway. The car continues traveling at a constant speed as it follows a sharp, unbanked curve to the left. You feel the door pushing on the right side of your body. Which of the following forces in the horizontal direction are acting on you? a) a static frictional force between you and the seat b) a normal force of the door c) a force pushing you toward the door d) answers a and b e) answers a and c

5.4.3. You are riding in the forward passenger seat of a car as it travels along a straight portion of highway. The car continues traveling at a constant speed as it follows a sharp, unbanked curve to the left. You feel the door pushing on the right side of your body. Which of the following forces in the horizontal direction are acting on you? a) a static frictional force between you and the seat b) a normal force of the door c) a force pushing you toward the door d) answers a and b e) answers a and c

5.4.4. A 1000-kg car travels along a straight portion of highway at a constant velocity of 10 m/s, due east. The car then encounters an unbanked curve of radius 50 m. The car follows the curve traveling at a constant speed of 10 m/s while the direction of the car changes from east to south. What is the magnitude of the frictional force between the tires and the road as the car negotiates the unbanked curve? a) 500 N b) 1000 N c) 2000 N d) 5000 N e) 10 000 N

5.4.4. A 1000-kg car travels along a straight portion of highway at a constant velocity of 10 m/s, due east. The car then encounters an unbanked curve of radius 50 m. The car follows the curve traveling at a constant speed of 10 m/s while the direction of the car changes from east to south. What is the magnitude of the frictional force between the tires and the road as the car negotiates the unbanked curve? a) 500 N b) 1000 N c) 2000 N d) 5000 N e) 10 000 N

5. 5. 1. A satellite is in a circular orbit around the Earth 5.5.1. A satellite is in a circular orbit around the Earth. If it is at an altitude equal to twice the radius of the Earth, 2RE, how does its speed v relate to the Earth's radius RE, and the magnitude g of the acceleration due to gravity on the Earth's surface? a) b) c) d) e)

5. 5. 1. A satellite is in a circular orbit around the Earth 5.5.1. A satellite is in a circular orbit around the Earth. If it is at an altitude equal to twice the radius of the Earth, 2RE, how does its speed v relate to the Earth's radius RE, and the magnitude g of the acceleration due to gravity on the Earth's surface? a) b) c) d) e)

5.5.2. It is the year 2094; and people are designing a new space station that will be placed in a circular orbit around the Sun. The orbital period of the station will be 6.0 years. Determine the ratio of the station’s orbital radius about the Sun to that of the Earth’s orbital radius about the Sun. Assume that the Earth’s obit about the Sun is circular. a) 2.4 b) 3.3 c) 4.0 d) 5.2 e) 6.0

5.5.2. It is the year 2094; and people are designing a new space station that will be placed in a circular orbit around the Sun. The orbital period of the station will be 6.0 years. Determine the ratio of the station’s orbital radius about the Sun to that of the Earth’s orbital radius about the Sun. Assume that the Earth’s obit about the Sun is circular. a) 2.4 b) 3.3 c) 4.0 d) 5.2 e) 6.0

5.5.3. A space probe is orbiting a planet on a circular orbit of radius R and a speed v. The acceleration of the probe is a. Suppose rockets on the probe are fired causing the probe to move to another circular orbit of radius 0.5R and speed 2v. What is the magnitude of the probe’s acceleration in the new orbit? a) a/2 b) a c) 2a d) 4a e) 8a

5.5.3. A space probe is orbiting a planet on a circular orbit of radius R and a speed v. The acceleration of the probe is a. Suppose rockets on the probe are fired causing the probe to move to another circular orbit of radius 0.5R and speed 2v. What is the magnitude of the probe’s acceleration in the new orbit? a) a/2 b) a c) 2a d) 4a e) 8a

5.6.1. A space station is designed in the shape of a large, hollow donut that is uniformly rotating. The outer radius of the station is 460 m. With what period must the station rotate so that a person sitting on the outer wall experiences “artificial gravity,” i.e. an acceleration of 9.8 m/s2? a) 43 s b) 76 s c) 88 s d) 110 s e) 230 s

5.6.1. A space station is designed in the shape of a large, hollow donut that is uniformly rotating. The outer radius of the station is 460 m. With what period must the station rotate so that a person sitting on the outer wall experiences “artificial gravity,” i.e. an acceleration of 9.8 m/s2? a) 43 s b) 76 s c) 88 s d) 110 s e) 230 s

5.7.1. At a circus, a clown on a motorcycle with a mass M travels along a horizontal track and enters a vertical circle of radius r. Which one of the following expressions determines the minimum speed that the motorcycle must have at the top of the track to remain in contact with the track? a) b) c) v = gR d) v = 2gR e) v = MgR

5.7.1. At a circus, a clown on a motorcycle with a mass M travels along a horizontal track and enters a vertical circle of radius r. Which one of the following expressions determines the minimum speed that the motorcycle must have at the top of the track to remain in contact with the track? a) b) c) v = gR d) v = 2gR e) v = MgR

5.7.2. A ball on the end of a rope is moving in a vertical circle near the surface of the earth. Point A is at the top of the circle; C is at the bottom. Points B and D are exactly halfway between A and C. Which one of the following statements concerning the tension in the rope is true? a) The tension is smallest at point A. b) The tension is smallest at point C. c) The tension is smallest at both points B and D. d) The tension is the same at points A and C. e) The tension is the same at all four points.

5.7.2. A ball on the end of a rope is moving in a vertical circle near the surface of the earth. Point A is at the top of the circle; C is at the bottom. Points B and D are exactly halfway between A and C. Which one of the following statements concerning the tension in the rope is true? a) The tension is smallest at point A. b) The tension is smallest at point C. c) The tension is smallest at both points B and D. d) The tension is the same at points A and C. e) The tension is the same at all four points.

5.7.3. An aluminum rod is designed to break when it is under a tension of 650 N. One end of the rod is connected to a motor and a 12-kg spherical object is attached to the other end. When the motor is turned on, the object moves in a vertical circle with a radius of 6.0 m. If the speed of the motor is continuously increased, what is the maximum speed the object can have at the bottom of the circle without breaking the rod? Ignore the mass of the rod for this calculation. a) 4.0 m/s b) 11 m/s c) 16 m/s d) 128 m/s e) 266 m/s

5.7.3. An aluminum rod is designed to break when it is under a tension of 650 N. One end of the rod is connected to a motor and a 12-kg spherical object is attached to the other end. When the motor is turned on, the object moves in a vertical circle with a radius of 6.0 m. If the speed of the motor is continuously increased, what is the maximum speed the object can have at the bottom of the circle without breaking the rod? Ignore the mass of the rod for this calculation. a) 4.0 m/s b) 11 m/s c) 16 m/s d) 128 m/s e) 266 m/s

5. 7. 4. A girl is swinging on a swing in the park 5.7.4. A girl is swinging on a swing in the park. As she wings back and forth, she follows a path that is part of a vertical circle. Her speed is maximum at the lowest point on the circle and temporarily zero m/s at the two highest points of the motion as her direction changes. Which of the following forces act on the girl when she is at the lowest point on the circle? a) the force of gravity, which is directed downward b) the force which is directed radially outward from the center of the circle c) the tension in the chains of the swing, which is directed upward d) answers b and c only e) answers a and c only

5. 7. 4. A girl is swinging on a swing in the park 5.7.4. A girl is swinging on a swing in the park. As she wings back and forth, she follows a path that is part of a vertical circle. Her speed is maximum at the lowest point on the circle and temporarily zero m/s at the two highest points of the motion as her direction changes. Which of the following forces act on the girl when she is at the lowest point on the circle? a) the force of gravity, which is directed downward b) the force which is directed radially outward from the center of the circle c) the tension in the chains of the swing, which is directed upward d) answers b and c only e) answers a and c only