Volume 3, Issue 4, Pages (October 2017)

Slides:



Advertisements
Similar presentations
Metal-Organic-Framework-Based Materials as Platforms for Renewable Energy and Environmental Applications  Huabin Zhang, Jianwei Nai, Le Yu, Xiong Wen.
Advertisements

Volume 1, Issue 2, Pages (October 2017)
Volume 3, Issue 4, Pages (October 2017)
Volume 2, Issue 2, Pages (February 2018)
Volume 3, Issue 2, Pages (August 2017)
Volume 1, Issue 3, Pages (November 2017)
Quan Pang, Xiao Liang, Abhinandan Shyamsunder, Linda F. Nazar  Joule 
3D Porous Carbonaceous Electrodes for Electrocatalytic Applications
Metal-Organic Frameworks for Energy Applications
“Seeing” the Invisibles at the Single-Molecule Level
Volume 3, Issue 3, Pages (September 2017)
Volume 3, Issue 5, Pages (November 2017)
Volume 1, Issue 2, Pages (October 2017)
Volume 8, Pages (October 2018)
Direct Growth of Well-Aligned MOF Arrays onto Various Substrates
Simple and Clean Photo-induced Methylation of Heteroarenes with MeOH
Zhen Li, Bu Yuan Guan, Jintao Zhang, Xiong Wen (David) Lou  Joule 
Template-Directed Growth of Well-Aligned MOF Arrays and Derived Self-Supporting Electrodes for Water Splitting  Guorui Cai, Wang Zhang, Long Jiao, Shu-Hong.
Volume 1, Issue 4, Pages (December 2017)
Hai-xia Zhong, Yu Zhang, Xin-bo Zhang  Chem 
Wei Wen, Jin-Ming Wu, Yin-Zhu Jiang, Lu-Lu Lai, Jian Song  Chem 
Volume 1, Issue 2, Pages (August 2016)
Volume 1, Issue 1, Pages (July 2016)
Volume 4, Issue 2, Pages (February 2018)
Volume 3, Issue 5, Pages (November 2017)
Volume 5, Issue 3, Pages (March 2019)
Volume 3, Issue 6, Pages (December 2017)
Volume 2, Issue 2, Pages (February 2017)
High-Energy Li Metal Battery with Lithiated Host
Yuping Wang, J. Fraser Stoddart  Chem 
Volume 4, Issue 2, Pages (February 2018)
Volume 3, Issue 3, Pages (September 2017)
Volume 4, Issue 2, Pages (February 2018)
Volume 4, Issue 4, Pages (April 2018)
What Limits the Performance of Ta3N5 for Solar Water Splitting?
Bio-inspired Self-Healing Electrolytes for Li-S Batteries
Volume 4, Issue 2, Pages (February 2018)
Volume 4, Issue 2, Pages (February 2018)
Vibronic Enhancement of Algae Light Harvesting
Volume 2, Issue 6, Pages (June 2017)
Construction of Complex CoS Hollow Structures with Enhanced Electrochemical Properties for Hybrid Supercapacitors  Han Hu, Bu Yuan Guan, Xiong Wen (David)
Volume 4, Issue 2, Pages (February 2018)
Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries
Chao Luo, Xiulin Fan, Zhaohui Ma, Tao Gao, Chunsheng Wang  Chem 
Transforming CO2 by Stabilizing the Labile Product
Volume 3, Issue 5, Pages (November 2017)
Metal-Organic Frameworks for Energy Applications
Volume 3, Issue 4, Pages (October 2017)
Volume 1, Issue 3, Pages (November 2017)
Khalid AlKaabi, Casey R. Wade, Mircea Dincă  Chem 
Volume 2, Issue 11, Pages (November 2018)
Yolk-Shell Architecture with Precision Expansion Void Control for Lithium Ion Batteries  Runwei Mo, David Rooney, Kening Sun  iScience 
Volume 3, Issue 1, Pages (July 2017)
3D Porous Carbonaceous Electrodes for Electrocatalytic Applications
Volume 11, Pages (January 2019)
Volume 7, Pages (September 2018)
Bin Li, Hui-Min Wen, Wei Zhou, Jeff Q. Xu, Banglin Chen  Chem 
Volume 4, Issue 1, Pages (January 2018)
Volume 3, Issue 1, Pages (July 2017)
Volume 3, Issue 1, Pages 8-10 (July 2017)
Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction
Long Jiao, Hai-Long Jiang  Chem  Volume 5, Issue 4, Pages (April 2019)
Volume 4, Issue 3, Pages (March 2018)
Realizing Formation and Decomposition of Li2O2 on Its Own Surface with a Highly Dispersed Catalyst for High Round-Trip Efficiency Li-O2 Batteries  Li-Na.
Volume 2, Issue 6, Pages (June 2017)
Khalid AlKaabi, Casey R. Wade, Mircea Dincă  Chem 
Volume 3, Issue 4, Pages (October 2017)
Facile Synthesis of Multi-shelled ZnS-CdS Cages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion  Peng Zhang, Bu Yuan Guan,
Volume 3, Issue 1, Pages (July 2017)
Volume 3, Issue 5, Pages (November 2017)
Presentation transcript:

Volume 3, Issue 4, Pages 652-664 (October 2017) Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO2 Reduction  Na Han, Yu Wang, Lu Ma, Jianguo Wen, Jing Li, Hechuang Zheng, Kaiqi Nie, Xinxia Wang, Feipeng Zhao, Yafei Li, Jian Fan, Jun Zhong, Tianpin Wu, Dean J. Miller, Jun Lu, Shuit-Tong Lee, Yanguang Li  Chem  Volume 3, Issue 4, Pages 652-664 (October 2017) DOI: 10.1016/j.chempr.2017.08.002 Copyright © 2017 Elsevier Inc. Terms and Conditions

Chem 2017 3, 652-664DOI: (10.1016/j.chempr.2017.08.002) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 1 Preparation and Electron Microscopic Characterizations of CoPPc/CNT Schematic illustration of the synthetic process of CoPPc/CNT (A); SEM (B) and TEM (C) images of CoPPc/CNT; HAADF image (D) and corresponding C, N, and Co EDS elemental mapping (E and F). The core-sheath hybrid structure is discernible. Chem 2017 3, 652-664DOI: (10.1016/j.chempr.2017.08.002) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 2 Spectroscopic Characterizations of CoPPc/CNT (A and B) Raman spectra (A) and FT-IR spectra (B) of CoPPc/CNT in comparison with CoPPc, commercial CoPc, and pure CNT. (C and D) Co K-edge XANES spectrum (C) and corresponding Fourier transform EXAFS spectrum (D) of CoPPc/CNT showing features characteristic to the Co-N4 structure. (E) UV-vis spectra of CoPPc/CNT in comparison with pure CoPPc, CoPc, and pure CNT. Chem 2017 3, 652-664DOI: (10.1016/j.chempr.2017.08.002) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 3 CO2RR Performance of CoPPc/CNT in CO2-Saturated 0.5 M NaHCO3 (A) CV curves of CoPPc/CNT, CoPPc, and commercial CoPc. (B) Chronoamperometric responses of CoPPc/CNT at different potentials as indicated. (C) CO faradic efficiency of CoPPc/CNT, CoPPc, and CoPc. (D) Specific CO current and TOF of CoPPc/CNT, CoPPc, and CoPc. (E) Corrected TOF of CoPPc/CNT in comparison with a few of the best results extracted from the literature. (F) Tafel plots of CoPPc/CNT, CoPPc, and CoPc. Chem 2017 3, 652-664DOI: (10.1016/j.chempr.2017.08.002) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 4 DFT Simulations of the CO2RR Process on a CoPPc Monolayer The optimized geometric structure of various states (CoPPc, CoPPc−, CO2−*, COOH*, and CO*) along the reaction path of CO2RR on a 2D CoPPc monolayer. Co, N, O, C, and H atoms are presented by orange, blue, red, gray, and green spheres, respectively. For CoPPc− and CO2−*, the electron-density differences caused by electron injection and CO2 adsorption are also plotted. Cyan and purple correspond to electron accumulation and depletion regions, respectively. Also shown are Co–N bond lengths (A and B) and Co–C bond lengths (C–E) in Ångstroms. (F) Proposed mechanistic scheme for the CO2RR on CoPPc. Chem 2017 3, 652-664DOI: (10.1016/j.chempr.2017.08.002) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 5 Long-Term Operation Stability of CoPPc/CNT Changes in current density and faradic efficiency of CoPPc/CNT over 24 hr at −0.54 V (η = 0.43 V). Chem 2017 3, 652-664DOI: (10.1016/j.chempr.2017.08.002) Copyright © 2017 Elsevier Inc. Terms and Conditions