Coordinating Different Homeostatic Processes

Slides:



Advertisements
Similar presentations
Neuronal Cell Types and Connectivity: Lessons from the Retina H. Sebastian Seung, Uygar Sümbül Neuron Volume 83, Issue 6, Pages (September 2014)
Advertisements

Coordinating Different Homeostatic Processes
Presynaptic Proteoglycans: Sweet Organizers of Synapse Development
Cortical Sensorimotor Reverberations
Volume 54, Issue 6, Pages (June 2007)
Have You Heard? Viral-Mediated Gene Therapy Restores Hearing
Presynaptic Self-Depression at Developing Neocortical Synapses
Endocannabinoids Control the Induction of Cerebellar LTD
Volume 49, Issue 1, Pages 1-2 (January 2006)
Neuropeptide Transmission in Brain Circuits
Volume 56, Issue 6, Pages (December 2007)
FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK Channels  Pan-Yue Deng, Ziv.
Dissonant Synapses Shall Be Punished
Daniel Meyer, Tobias Bonhoeffer, Volker Scheuss  Neuron 
Yildirim Sara, Tuhin Virmani, Ferenc Deák, Xinran Liu, Ege T. Kavalali 
Postsynaptic PKA Controls Quantal Size and Reveals a Retrograde Signal that Regulates Presynaptic Transmitter Release in Drosophila  Graeme W Davis, Aaron.
Highwire Restrains Synaptic Growth by Attenuating a MAP Kinase Signal
Transsynaptic Control of Presynaptic Ca2+ Influx Achieves Homeostatic Potentiation of Neurotransmitter Release  Martin Müller, Graeme W. Davis  Current.
Kristian Wadel, Erwin Neher, Takeshi Sakaba  Neuron 
Vittorio Gallo, Benjamin Deneen  Neuron 
Krüppel Mediates the Selective Rebalancing of Ion Channel Expression
Tumor Necrosis Factor-α Mediates One Component of Competitive, Experience- Dependent Plasticity in Developing Visual Cortex  Megumi Kaneko, David Stellwagen,
K+ Channel Regulation of Multicompartmental Signal Integration
Aligning a Synapse Neuron
Activity-Dependent Regulation of Synapses by Retrograde Messengers
Sacha B. Nelson, Vera Valakh  Neuron 
Rebecca S. Jones, Reed C. Carroll, Scott Nawy  Neuron 
A Cooperative Mechanism Involving Ca2+-Permeable AMPA Receptors and Retrograde Activation of GABAB Receptors in Interpeduncular Nucleus Plasticity  Peter.
Spike Timing-Dependent LTP/LTD Mediates Visual Experience-Dependent Plasticity in a Developing Retinotectal System  Yangling Mu, Mu-ming Poo  Neuron 
Ménage à Trio during BMP-Mediated Retrograde Signaling at the NMJ
A Presynaptic Glutamate Receptor Subunit Confers Robustness to Neurotransmission and Homeostatic Potentiation  Beril Kiragasi, Joyce Wondolowski, Yan.
Differential Expression of Posttetanic Potentiation and Retrograde Signaling Mediate Target-Dependent Short-Term Synaptic Plasticity  Michael Beierlein,
FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK Channels  Pan-Yue Deng, Ziv.
Disparate Postsynaptic Induction Mechanisms Ultimately Converge to Drive the Retrograde Enhancement of Presynaptic Efficacy  Pragya Goel, Xiling Li, Dion.
Current Compensation in Neuronal Homeostasis
Volume 123, Issue 1, Pages (October 2005)
Volume 74, Issue 1, Pages (April 2012)
Volume 83, Issue 3, Pages (August 2014)
Synapses and Growth Cones on Two Sides of a Highwire
Plasticity of Burst Firing Induced by Synergistic Activation of Metabotropic Glutamate and Acetylcholine Receptors  Shannon J. Moore, Donald C. Cooper,
Dario Brambilla, David Chapman, Robert Greene  Neuron 
Presynaptic HCN Channels Regulate Vesicular Glutamate Transport
Volume 91, Issue 6, Pages (September 2016)
Volume 50, Issue 3, Pages (May 2006)
Volume 52, Issue 4, Pages (November 2006)
Noradrenergic Control of Associative Synaptic Plasticity by Selective Modulation of Instructive Signals  Megan R. Carey, Wade G. Regehr  Neuron  Volume.
Courting a Cure for Fragile X
Location, Location, Location: Contrasting Roles of Synaptic and Extrasynaptic NMDA Receptors in Huntington's Disease  Michael S. Levine, Carlos Cepeda,
Bo Li, Ran-Sook Woo, Lin Mei, Roberto Malinow  Neuron 
David A. Lewis, Allison A. Curley, Jill R. Glausier, David W. Volk 
A Hierarchy of Cell Intrinsic and Target-Derived Homeostatic Signaling
Marta Navarrete, Alfonso Araque  Neuron 
Gilad Silberberg, Henry Markram  Neuron 
Volume 49, Issue 5, Pages (March 2006)
Michael J. Higley, Bernardo L. Sabatini  Neuron 
Transsynaptic Control of Presynaptic Ca2+ Influx Achieves Homeostatic Potentiation of Neurotransmitter Release  Martin Müller, Graeme W. Davis  Current.
Martin Müller, Edward C.G. Pym, Amy Tong, Graeme W. Davis  Neuron 
Inbal Riven, Shachar Iwanir, Eitan Reuveny  Neuron 
Volume 88, Issue 6, Pages (December 2015)
Deactivation of L-type Ca Current by Inhibition Controls LTP at Excitatory Synapses in the Cerebellar Nuclei  Abigail L. Person, Indira M. Raman  Neuron 
Karen M. Crosby, Wataru Inoue, Quentin J. Pittman, Jaideep S. Bains 
Metaplasticity of Hypothalamic Synapses following In Vivo Challenge
Yildirim Sara, Tuhin Virmani, Ferenc Deák, Xinran Liu, Ege T. Kavalali 
Xiling Li, Pragya Goel, Joyce Wondolowski, Jeremy Paluch, Dion Dickman 
Aya Matsui, Veronica A. Alvarez  Neuron 
Kristy A. Sundberg, Jude F. Mitchell, John H. Reynolds  Neuron 
The Back and Forth of Dendritic Plasticity
c-Raf in KRas Mutant Cancers: A Moving Target
David Hubel and Torsten Wiesel
Volume 54, Issue 1, Pages (April 2007)
Presentation transcript:

Coordinating Different Homeostatic Processes Eve Marder, Lamont S. Tang  Neuron  Volume 66, Issue 2, Pages 161-163 (April 2010) DOI: 10.1016/j.neuron.2010.04.022 Copyright © 2010 Elsevier Inc. Terms and Conditions

Figure 1 Cartoon Showing that Homeostasis Is Produced Using a Closed-Loop Negative Feedback Sensor reads the system's behavior, and this is compared to the set point with the biological analog of a differential amplifier that detects an error signal. Then either a positive or negative correction is sent back to bring the system values back to the set point. Neuron 2010 66, 161-163DOI: (10.1016/j.neuron.2010.04.022) Copyright © 2010 Elsevier Inc. Terms and Conditions

Figure 2 Schematic of Rapid Induction of Synaptic Homeostasis and Compensation at the Neuromuscular Junction of Drosophila (Left) Under normal conditions, the NMJ displays large evoked excitatory junctional potentials (EJP; red traces) and miniature excitatory junctional potentials (mEJP; blue traces). (Middle) Application of postsynaptic glutamate antagonist (philanthotoxin, PhTx) initially causes reduction in both EJP and mEJP amplitude at the NMJ. (Right) After 10 min in the presence of PhTx, EJP amplitude increase to baseline values while mEJP amplitude remains suppressed. Enhancement of presynaptic neurotransmitter release is responsible for this compensatory increase in EJP amplitude. Neuron 2010 66, 161-163DOI: (10.1016/j.neuron.2010.04.022) Copyright © 2010 Elsevier Inc. Terms and Conditions

Figure 3 Interaction between Cell-Intrinsic and Synaptic Homeostatic Processes and Homeostatic Coupling of IA Channel Expression in Drosophila (First panel) Wild-type response to PhTx shows robust synaptic compensation after 10 min of PhTx. (Second panel) The Shal mutant apparently impairs synaptic homeostasis. The loss of the Shal channel is accompanied by compensatory upregulation of shaker mRNA in the CNS. (Third panel) Homeostatic reciprocal regulation of two potassium channels encoding IA. Shaker mutants do not display deficits in synaptic homeostasis but do show substantial compensatory upregulation of shal mRNA in the CNS. (Fourth panel) Pharmacological unmasking of underlying synaptic homeostasis. Application of AP-4 (a specific antagonist of the Shaker channel) restores synaptic homeostasis, demonstrating that upregulation of shaker does not block the induction synaptic compensation. Rather, the Shaker channel blocks the apparent expression of synaptic homeostasis by presumably acting as a shunt that blocks increased presynaptic neurotransmitter release. Neuron 2010 66, 161-163DOI: (10.1016/j.neuron.2010.04.022) Copyright © 2010 Elsevier Inc. Terms and Conditions