7. Edmonds-karp Demo
Max-Flow Instance G: flow capacity Flow value = 0 2 4 s 3 5 t 4 8 6 10 flow 2 4 4 capacity G: 10 8 6 2 10 s 10 3 9 5 10 t Flow value = 0
Edmonds-Karp Algorithm flow 2 4 4 capacity G: 9 X 10 8 6 2 10 9 X 9 s 10 3 9 5 10 t Flow value = 0 2 4 4 residual capacity Gf: 10 8 6 2 10 s 10 3 9 5 10 t
Edmonds-Karp Algorithm 4 X 2 4 4 4 4 G: X 9 X 10 8 6 2 10 9 9 s 10 3 9 5 10 t Flow value = 9 2 4 4 Gf: 10 8 6 2 10 s 1 3 9 5 1 t 9 9
Edmonds-Karp Algorithm 4 2 4 4 4 G: 5 4 X X 1 10 8 6 2 10 9 9 10 9 X s 10 3 9 5 10 t Flow value = 13 2 4 4 Gf: 4 4 6 8 6 2 6 s 1 3 9 5 1 t 9 9
Edmonds-Karp Algorithm 4 2 4 4 4 10 G: X 5 X 1 X 9 10 8 6 6 X 2 5 10 9 9 10 s 10 3 9 5 10 t Flow value = 14 2 4 4 Gf: 5 4 5 7 6 2 6 1 s 1 3 9 5 9 t 9
Edmonds-Karp Algorithm 4 2 4 4 G: 10 6 9 10 8 6 2 10 5 9 9 10 s 10 3 9 5 10 t Cut capacity = 19 Flow value = 19 2 4 4 Gf: 9 10 2 1 2 5 1 6 s 1 3 9 5 9 t 9