Empirical Methods for Microeconomic Applications William Greene Department of Economics Stern School of Business.

Slides:



Advertisements
Similar presentations
[Part 12] 1/38 Discrete Choice Modeling Stated Preference Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Advertisements

Discrete Choice Modeling
Econometrics I Professor William Greene Stern School of Business
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Modeling
Discrete Choice Modeling William Greene Stern School of Business IFS at UCL February 11-13, 2004
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
12. Random Parameters Logit Models. Random Parameters Model Allow model parameters as well as constants to be random Allow multiple observations with.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Error Component models Ric Scarpa Prepared for the Choice Modelling Workshop 1st and 2nd of May Brisbane Powerhouse, New Farm Brisbane.
Discrete Choice Models William Greene Stern School of Business New York University.
1/54: Topic 5.1 – Modeling Stated Preference Data Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA.
Part 12: Random Parameters [ 1/46] Econometric Analysis of Panel Data William Greene Department of Economics Stern School of Business.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Lecture 14-2 Multinomial logit (Maddala Ch 12.2)
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
15. Stated Preference Experiments. Panel Data Repeated Choice Situations Typically RP/SP constructions (experimental) Accommodating “panel data” Multinomial.
Discrete Choice Modeling William Greene Stern School of Business New York University.
10. Multinomial Choice. A Microeconomics Platform Consumers Maximize Utility (!!!) Fundamental Choice Problem: Maximize U(x 1,x 2,…) subject to prices.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Models William Greene Stern School of Business New York University.
Empirical Methods for Microeconomic Applications William Greene Department of Economics Stern School of Business.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Empirical Methods for Microeconomic Applications University of Lugano, Switzerland May 27-31, 2013 William Greene Department of Economics Stern School.
[Part 9] 1/79 Discrete Choice Modeling Modeling Heterogeneity Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
1/54: Topic 5.1 – Modeling Stated Preference Data Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Models William Greene Stern School of Business New York University.
Discrete Choice Modeling
Part 2: Model and Inference 2-1/49 Regression Models Professor William Greene Stern School of Business IOMS Department Department of Economics.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
14. Scaling and Heteroscedasticity. Using Degenerate Branches to Reveal Scaling Travel Fly Rail Air CarTrain Bus LIMB BRANCH TWIG DriveGrndPblc.
Microeconometric Modeling
1/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Microeconometric Modeling William Greene Stern School of Business New York University New.
[Part 7] 1/96 Discrete Choice Modeling Multinomial Choice Models Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University.
11. Nested Logit Models. Extended Formulation of the MNL Groups of similar alternatives Compound Utility: U(Alt)=U(Alt|Branch)+U(branch) Behavioral implications.
[Part 8] 1/26 Discrete Choice Modeling Nested Logit Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University.
1/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Microeconometric Modeling William Greene Stern School of Business New York University New.
Discrete Choice Modeling William Greene Stern School of Business New York University.
1/122: Topic 3.3 – Discrete Choice; The Multinomial Logit Model Microeconometric Modeling William Greene Stern School of Business New York University New.
[Part 5] 1/43 Discrete Choice Modeling Ordered Choice Models Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University.
William Greene Stern School of Business New York University
M.Sc. in Economics Econometrics Module I
Discrete Choice Modeling
William Greene Stern School of Business New York University
Discrete Choice Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Empirical Methods for Microeconomic Applications
William Greene Stern School of Business New York University
Microeconometric Modeling
Econometrics Chengyuan Yin School of Mathematics.
Discrete Choice Modeling
Microeconometric Modeling
Microeconometric Modeling
Econometric Analysis of Panel Data
William Greene Stern School of Business New York University
William Greene Stern School of Business New York University
Microeconometric Modeling
Econometric Analysis of Panel Data
Empirical Methods for Microeconomic Applications
Empirical Methods for Microeconomic Applications
Presentation transcript:

Empirical Methods for Microeconomic Applications William Greene Department of Economics Stern School of Business

Lab 6. Multinomial Choice

Upload Your mnc Project File

Data for Multinomial Choice

Command Structure Generic CLOGIT (or NLOGIT) ; Lhs = choice variable ; Choices = list of labels for the J choices ; RHS = list of attributes that vary by choice ; RH2 = list of attributes that do not vary by choice $ For this application CLOGIT (or NLOGIT) ; Lhs = MODE ; Choices = Air, Train, Bus, Car ; RHS = TTME,INVC,INVT,GC ; RH2 = ONE, HINC $

Note: coef. on GC has the wrong sign!

Effects of Changes in Attributes on Probabilities Partial Effects: Effect of a change in attribute k of alternative m on the probability that choice j will be made is Proportional changes: Elasticities Note the elasticity is the same for all choices j. (IIA)

Note the effect of IIA on the cross effects. All are the same. Elasticities

Other Useful Options ; Describe for descriptive by statistics, by alternative ; Crosstab for crosstabulations of actuals and predicted ; List for listing of outcomes and predictions ; Prob = name to create a new variable with fitted probabilities ; IVB = log sum, inclusive value. New variable

Analyzing Behavior of Market Shares Scenario: What happens to the number of people how make specific choices if a particular attribute changes in a specified way? Fit the model first, then using the identical model setup, add ; Simulation = list of choices to be analyzed ; Scenario = Attribute (in choices) = type of change

Testing IIA vs. AIR Choice ? No alternative constants in the model NLOGIT ; Lhs = Mode ; Choices = Air,Train,Bus,Car ; Rhs = TTME,INVC,INVT,GC$ NLOGIT ; Lhs = Mode ; Choices = Air,Train,Bus,Car ; Rhs = TTME,INVC,INVT,GC ; IAS = Air $

Nested Logit Model Specify trees with :TREE = name1(alt1,alt2…), name2(alt…. ),… Names are optional names for branches. There can be up to 4 levels in the tree.

Nested Logit Model

Normalizations There are different ways to normalize the variances in the nested logit model, at the lowest level, or up at the highest level. Use ;RU1 for the low level or ;RU2 to normalize at the branch level

Model Form RU1

Moving Scaling Down to the Twig Level

Normalizations of Nested Logit Models NLOGIT ; Lhs = Mode ; RHS = GC, TTME, INVT ; RH2 = ONE ; Choices = Air,Train,Bus,Car ; Tree = Private (Air,Car), Public (Train,Bus) ; RU1 $ NLOGIT ; Lhs = Mode ; RHS = GC, TTME, INVT ; RH2 = ONE ; Choices = Air,Train,Bus,Car ; Tree = Private (Air,Car), Public (Train,Bus) ; RU2 $

Heteroscedasticity Across Utility Functions in the MNL Model Add ;HET to the generic NLOGIT command. No other changes. NLOGIT ; Lhs = Mode ; Choices = Air,Train,Bus,Car ; Rhs = TTME,INVC,INVT,GC,One ; Het ; Effects: INVT(*) $

Heteroscedastic Extreme Value Model Heteroskedastic Extreme Value Model Dependent variable MODE Log likelihood function Restricted log likelihood Chi squared [ 10 d.f.] R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj No coefficients Constants only At start values Response data are given as ind. choices Number of obs.= 210, skipped 0 obs Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] |Attributes in the Utility Functions (beta) TTME| ** INVC| * INVT| ** GC|.11904* A_AIR| * A_TRAIN| ** A_BUS| ** |Scale Parameters of Extreme Value Distns Minus 1. s_AIR| *** s_TRAIN| s_BUS| s_CAR| (Fixed Parameter) |Std.Dev=pi/(theta*sqr(6)) for H.E.V. distribution s_AIR| * s_TRAIN| s_BUS| s_CAR| (Fixed Parameter) Use to test vs. IIA assumption in MNL model? LogL 0 = IIA would not be rejected on this basis. (Not necessarily a test of that methodological assumption.) Normalized for estimation Structural parameters

HEV Model - Elasticities | Elasticity averaged over observations.| | Attribute is INVC in choice AIR | | Effects on probabilities of all choices in model: | | * = Direct Elasticity effect of the attribute. | | Mean St.Dev | | * Choice=AIR | | Choice=TRAIN | | Choice=BUS | | Choice=CAR | | Attribute is INVC in choice TRAIN | | Choice=AIR | | * Choice=TRAIN | | Choice=BUS | | Choice=CAR | | Attribute is INVC in choice BUS | | Choice=AIR | | Choice=TRAIN | | * Choice=BUS | | Choice=CAR | | Attribute is INVC in choice CAR | | Choice=AIR | | Choice=TRAIN | | Choice=BUS | | * Choice=CAR | | INVC in AIR | | Mean St.Dev | | * | | | | INVC in TRAIN | | | | * | | | | INVC in BUS | | | | * | | | | INVC in CAR | | | | * | Multinomial Logit

Multinomial Probit Model Add ;MNP to the generic command Use ;PTS=number to specify the number of points in the simulations. Use a small number (15) for demonstrations and examples. Use a large number (200+) for real estimation. (Dont fit this now. Takes forever to compute. Much less practical – and probably less useful – than other specifications.)

Multinomial Probit Model Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] |Attributes in the Utility Functions (beta) GC|.11825** TTME| *** INVC| *** INVT| *** A_AIR| * A_TRAIN| *** A_BUS| *** |Std. Devs. of the Normal Distribution. s[AIR]| ** s[TRAIN]| * s[BUS]| (Fixed Parameter) s[CAR]| (Fixed Parameter) |Correlations in the Normal Distribution rAIR,TRA| rAIR,BUS| rTRA,BUS| rAIR,CAR| (Fixed Parameter) rTRA,CAR| (Fixed Parameter) rBUS,CAR| (Fixed Parameter)

MNP Elasticities | Elasticity averaged over observations.| | Attribute is INVT in choice AIR | | Effects on probabilities of all choices in model: | | * = Direct Elasticity effect of the attribute. | | Mean St.Dev | | * Choice=AIR | | Choice=TRAIN | | Choice=BUS | | Choice=CAR | | Attribute is INVT in choice TRAIN | | Choice=AIR | | * Choice=TRAIN | | Choice=BUS | | Choice=CAR | | Attribute is INVT in choice BUS | | Choice=AIR | | Choice=TRAIN | | * Choice=BUS | | Choice=CAR | | Attribute is INVT in choice CAR | | Choice=AIR | | Choice=TRAIN | | Choice=BUS | | * Choice=CAR |

Random Parameters and Latent Classes

Random Effects in Utility Functions Are Created by Random ASCs RPLogit ; lhs=mode ; choices=air,train,bus,car ; rhs=gc,ttme ; rh2=one ; rpl ; maxit=50;pts=25 ; halton ; fcn=a_air(n),a_train(n),a_bus(n) ; Correlated $ Model has U(i,j,t) = x(i,j,t) + e(i,j,t) + w(i,j) w(i,j) is constant across time, correlated across utilities

Options for Random Parameters in NLOGIT Only Name ( type ) = as described above Name ( C ) = a constant parameter. Variance = 0 Name ( O ) = triangular with one end at 0 the other at 2 Name (type | value) = fixes the mean at value, variance is free Name (type | # ) if variables in RPL=list, they do not apply to this parameter. Mean is constant. Name (type | #pattern) as above, but pattern is used to remove only some variables in RPL=list. Pattern is 1s and 0s. E.g., if RPL=Hinc,Psize, GC(N | #10) allows only Hinc in the mean. Name (type, value ) = forces standard deviation to equal value times absolute value of. Name (type,*,value) forces mean equal to value, variance is free, any variables in RPL=list are removed for this parameter.

Some Random Parameters Models Constrain a Parameter Distribution to One Side of Zero RPLOGIT ; lhs=mode ; choices=air,train,bus,car ; rhs=gc,ttme,invt ; rh2=one ; rpl ; maxit=50 ;pts=25 ; halton ; fcn=gc(o) $ Error Components Induce Correlation ECLOGIT ; lhs=mode ; choices=air,train,bus,car ; rhs=gc,ttme,invt ; rh2=one ; rpl ; maxit=50 ;pts=25 ; halton ; fcn=gc(n) ; ECM = (air,car),(bus,train) $

Using NLOGIT To Fit an LC Model We use the brand choices data in mnc.lpj SAMPLE ; All $ Specify the model with ; LCM ; PTS = number of classes To request class probabilities to depend on variables in the data, use ; LCM = the variables (Do not include ONE in this variables list.)

Latent Class Models

Combining RP and SP Data Survey sample of 2,688 trips, 2 or 4 choices per situation Sample consists of 672 individuals Choice based sample Revealed/Stated choice experiment: Revealed: Drive,ShortRail,Bus,Train Hypothetical: Drive,ShortRail,Bus,Train,LightRail,ExpressBus Attributes: Cost –Fuel or fare Transit time Parking cost Access and Egress time

Each person makes four choices from a choice set that includes either 2 or 4 alternatives. The first choice is the RP between two of the 4 RP alternatives The second-fourth are the SP among four of the 6 SP alternatives. There are 10 alternatives in total. A Stated Choice Experiment with Variable Choice Sets

A Model for Revealed Preference Data Using Only the Revealed Preference Data NLOGIT ; if[sprp = 1] ? Using only RP data ;lhs=chosen,cset,altij ;choices=RPDA,RPRS,RPBS,RPTN ;maxit=100 ;model: U(RPDA) = rdasc + fl*fcost+tm*autotime/ U(RPRS) = rrsasc + fl*fcost+tm*autotime/ U(RPBS) = rbsasc + ptc*mptrfare+mt*mptrtime/ U(RPTN) = ptc*mptrfare+mt*mptrtime$

An RP Model for Stated Preference Data Using only the Stated Preference Data BASE MODEL NLOGIT ; if[sprp = 2] ? Using only SP data ; Lhs=chosen,cset,alt ; Choices=SPDA,SPRS,SPBS,SPTN,SPLR,SPBW ; Maxit=150 ; Model: U(SPDA) = dasc +cst*fueld+ tmcar*time+prk*parking +pincda*pincome +cavda*carav/ U(SPRS) = rsasc+cst*fueld + tmcar*time+prk*parking/ U(SPBS) = bsasc+cst*fared+ tmpt*time + act*acctime+egt*egrtime/ U(SPTN) = tnasc+cst*fared + tmpt*time + act*acctime+egt*egrtime/ U(SPLR) = lrasc+cst*fared + tmpt*time + act*acctime +egt*egrtime/ U(SPBW) = cst*fared + tmpt*time + act*acctime+egt*egrtime$

A Random Parameters Approach NLOGIT ;lhs=chosen,cset,altij ;choices=RPDA,RPRS,RPBS,RPTN,SPDA,SPRS,SPBS,SPTN,SPLR,SPBW /.592,.208,.089,.111,1.0,1.0,1.0,1.0,1.0,1.0 ; rpl ; pds=4 ; halton ; pts=25 ; fcn=invc(n) ; model: U(RPDA) = rdasc + invc*fcost + tmrs*autotime + pinc*pincome + CAVDA*CARAV/ U(RPRS) = rrsasc + invc*fcost + tmrs*autotime/ U(RPBS) = rbsasc + invc*mptrfare + mtpt*mptrtime/ U(RPTN) = cstrs*mptrfare + mtpt*mptrtime/ U(SPDA) = sdasc + invc*fueld + tmrs*time+cavda*carav + pinc*pincome/ U(SPRS) = srsasc + invc*fueld + tmrs*time/ U(SPBS) = invc*fared + mtpt*time +acegt*spacegtm/ U(SPTN) = stnasc + invc*fared + mtpt*time+acegt*spacegtm/ U(SPLR) = slrasc + invc*fared + mtpt*time+acegt*spacegtm/ U(SPBW) = sbwasc + invc*fared + mtpt*time+acegt*spacegtm$

Connecting Choice Situations through RPs Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] |Random parameters in utility functions INVC| *** |Nonrandom parameters in utility functions RDASC| TMRS| *** PINC| CAVDA|.35750*** RRSASC| *** RBSASC| *** MTPT| *** CSTRS| *** SDASC| SRSASC| ACEGT| *** STNASC| SLRASC|.27250** SBWASC| |Distns. of RPs. Std.Devs or limits of triangular NsINVC|.45285***