Angles Formed by Parallel Lines and Transversals 3-2

Slides:



Advertisements
Similar presentations
Proving Lines Parallel
Advertisements

PARALLEL LINES CUT BY A TRANSVERSAL
Angles Formed by Parallel Lines and Transversals
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Use Parallel Lines and Transversals 3-2
Proving Lines Parallel (3-3)
3.5 Proving Lines Parallel
Identify each angle pair. 1. 1 and 3 2. 3 and 6 3. 4 and 5
3-3 Parallel Lines and Transversals Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt McDougal Geometry 3-2 Angles Formed by Parallel Lines and Transversals 3-2 Angles Formed by Parallel Lines and Transversals Holt Geometry Section.
Holt McDougal Geometry 3-2 Angles Formed by Parallel Lines and Transversals Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6 3. 4 and 5 4.
Warm Up Identify each angle pair. (yes you should draw the diagram) 1. 1 and 3 2. 3 and 6 3. 4 and 5 4. 6 and 7 same-side int s corr. s alt.
Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6
3.5 Proving Lines Parallel. Objectives Recognize angle conditions that occur with parallel lines Prove that two lines are parallel based on given angle.
PARALLEL LINES CUT BY A TRANSVERSAL. Holt McDougal Geometry Angles Formed by Parallel Lines and Transversals.
Example 2: Classifying Pairs of Angles
Angles Formed by Parallel Lines and Transversals 3-2
OBJECTIVE: PROVE AND USE THEOREMS ABOUT THE ANGLES FORMED BY PARALLEL LINES AND A TRANSVERSAL. WARM UP: ON HANDOUT Who, When, Where, and Why Parallel?
3-5 Using Properties of Parallel Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt Geometry 3-2 Angles Formed by Parallel Lines and Transversals 3-2 Angles Formed by Parallel Lines and Transversals Holt Geometry Warm Up Warm Up Lesson.
WARM UP Identify each angle pair and and and and 7 Corresponding angles Alternate interior angles Alternate exterior angles.
Flowchart and Paragraph Proofs
Angles Formed by Parallel Lines and Transversals 3-2
14. AB // DE 2 and  AB and CF 1 and 5
Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6
Angles Formed by Parallel Lines and Transversals 3-2
3.3 Proving Lines are Parallel
Angles Formed by Parallel Lines and Transversals 3-2
Proving Lines Parallel
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals
Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Parallel Lines & Transversals
21.1 Objective Prove and use theorems about the angles formed by parallel lines and a transversal.
Pearson Unit 1 Topic 3: Parallel and Perpendicular Lines 3-2: Properties of Parallel Lines Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6
Proving Lines Parallel
Warm Up: 1. Find the value of x. ANSWER 32
Angles Formed by Parallel Lines and Transversals 3-2
Proving Lines Parallel
Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6
Angles Formed by Parallel Lines and Transversals 3-2
3.2 BUILDING ON 3.1… Relationships for angle pairs of parallel lines with a transversal: corresponding angles alternate interior angles alternate exterior.
Angles Formed by Parallel Lines and Transversals 3-2
Day 7 (2/20/18) Math 132 CCBC Dundalk.
3.2 BUILDING ON 3.1… Relationships for angle pairs of parallel lines with a transversal: corresponding angles alternate interior angles alternate exterior.
Drill: Monday, 11/7 Identify each angle pair. 1. 1 and 3
Objective Use the angles formed by a transversal to prove two lines are parallel.
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Parallel lines and Transversals
Proving Lines Parallel
Proving Lines Parallel
Objectives Identify parallel, perpendicular, and skew lines.
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Proving Lines Parallel
Objective Prove and use theorems about the angles formed by parallel lines and a transversal.
3.2 – Use Parallel Lines and Transversals
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals
Angles Formed by Parallel Lines and Transversals 3-2
Presentation transcript:

Angles Formed by Parallel Lines and Transversals 3-2 Warm Up Lesson Presentation Lesson Quiz Holt McDougal Geometry Holt Geometry

Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6 3. 4 and 5 4. 6 and 7 corr. s alt. int. s alt. ext. s same-side int s

Objective Prove and use theorems about the angles formed by parallel lines and a transversal.

Example 1: Using the Corresponding Angles Postulate Find each angle measure. A. mECF x = 70 Corr. s Post. mECF = 70° B. mDCE 5x = 4x + 22 Corr. s Post. x = 22 Subtract 4x from both sides. mDCE = 5x = 5(22) Substitute 22 for x. = 110°

Check It Out! Example 1 Find mQRS. x = 118 Corr. s Post. mQRS + x = 180° Def. of Linear Pair mQRS = 180° – x Subtract x from both sides. = 180° – 118° Substitute 118° for x. = 62°

If a transversal is perpendicular to two parallel lines, all eight angles are congruent. Helpful Hint

Remember that postulates are statements that are accepted without proof. Since the Corresponding Angles Postulate is given as a postulate, it can be used to prove the next three theorems.

Example 2: Finding Angle Measures Find each angle measure. A. mEDG mEDG = 75° Alt. Ext. s Thm. B. mBDG x – 30° = 75° Alt. Ext. s Thm. x = 105 Add 30 to both sides. mBDG = 105°

Check It Out! Example 2 Find mABD. 2x + 10° = 3x – 15° Alt. Int. s Thm. Subtract 2x and add 15 to both sides. x = 25 mABD = 2(25) + 10 = 60° Substitute 25 for x.

Example 3: Music Application Find x and y in the diagram. By the Alternate Interior Angles Theorem, (5x + 4y)° = 55°. By the Corresponding Angles Postulate, (5x + 5y)° = 60°. 5x + 5y = 60 –(5x + 4y = 55) y = 5 Subtract the first equation from the second equation. Substitute 5 for y in 5x + 5y = 60. Simplify and solve for x. 5x + 5(5) = 60 x = 7, y = 5

Check It Out! Example 3 Find the measures of the acute angles in the diagram. By the Alternate Exterior Angles Theorem, (25x + 5y)° = 125°. By the Corresponding Angles Postulate, (25x + 4y)° = 120°. An acute angle will be 180° – 125°, or 55°. The other acute angle will be 180° – 120°, or 60°.

Lesson Quiz State the theorem or postulate that is related to the measures of the angles in each pair. Then find the unknown angle measures. 1. m1 = 120°, m2 = (60x)° 2. m2 = (75x – 30)°, m3 = (30x + 60)° Alt. Ext. s Thm.; m2 = 120° Corr. s Post.; m2 = 120°, m3 = 120° 3. m3 = (50x + 20)°, m4= (100x – 80)° 4. m3 = (45x + 30)°, m5 = (25x + 10)° Alt. Int. s Thm.; m3 = 120°, m4 =120° Same-Side Int. s Thm.; m3 = 120°, m5 =60°