Volume 65, Issue 2, Pages (February 2004)

Slides:



Advertisements
Similar presentations
Acute renal hemodynamic effects of dimanganese decacarbonyl and cobalt protoporphyrin Begoña Arregui, Bernardo López, Miguel García Salom, Fernando Valero,
Advertisements

Date of download: 7/9/2016 Copyright © The American College of Cardiology. All rights reserved. From: Local Renal Delivery of a Natriuretic Peptide: A.
Volume 59, Issue 3, Pages (March 2001)
Blood oxygen level–dependent measurement of acute intra-renal ischemia
Increased cGMP phosphodiesterase activity mediates renal resistance to ANP in rats with bile duct ligation  Xi-Ping Ni, Massy Safai, David G. Gardner,
Melamine toxicity: one more culprit in calcium kidney lithiasis
M.S. Mozaffari, C. Patel, R. Abdelsayed, S.W. Schaffer 
Plasma sodium and hypertension
Renal hemodynamics in radiocontrast medium-induced renal dysfunction: A role for dopamine-1 receptors  George L. Bakris, M.D, Nancy A. Lass, Dana Glock 
Sushrut S. Waikar, Venkata S. Sabbisetti, Joseph V. Bonventre 
Confounding: What it is and how to deal with it
Blaithin A. McMahon, Patrick Thomas Murray  Kidney International 
The case ∣ A young woman with abdominal discomfort and a mass
From secondary to primary prevention of progressive renal disease: The case for screening for albuminuria  Paul E. De Jong, Barry M. Brenner  Kidney International 
Volume 68, Issue 2, Pages (August 2005)
The Case ∣ Ascites with oliguric acute renal failure
Prehypertension and chronic kidney disease: the ox or the plow?
Dieter A. Häberle, Wolfgang Biller, Takuyuki Ise, Christian J. Metz 
John P. Middleton, Patrick H. Pun  Kidney International 
Volume 65, Issue 6, Pages (June 2004)
Hiroyuki Kobori, Lisa M. Harrison-Bernard, L. Gabriel Navar 
Volume 77, Issue 8, Pages (April 2010)
Urea for hyponatremia? Kidney International
Volume 77, Issue 1, Pages 5-6 (January 2010)
Proinflammatory effects of iron sucrose in chronic kidney disease
Volume 81, Issue 3, Pages (February 2012)
Volume 67, Issue 3, Pages (March 2005)
Blood oxygen level–dependent measurement of acute intra-renal ischemia
Preservation of the kidney by carbon monoxide: a black swan phenomenon
Volume 69, Issue 3, Pages (February 2006)
Volume 68, Issue 6, Pages (December 2005)
Volume 72, Issue 5, Pages (September 2007)
Melamine toxicity: one more culprit in calcium kidney lithiasis
Volume 60, Issue 4, Pages (October 2001)
Impact of gender on the renal response to angiotensin II
Volume 72, Issue 2, Pages (July 2007)
Fabia M.O. Pinho, Dirce M.T. Zanetta, Emmanuel A. Burdmann 
Volume 69, Issue 12, Pages (June 2006)
Volume 69, Issue 3, Pages (February 2006)
Volume 74, Issue 8, Pages (October 2008)
Methods for guideline development
Volume 72, Issue 9, Pages (November 2007)
Volume 56, Issue 2, Pages (August 1999)
Volume 78, Issue 5, Pages (September 2010)
Increased cGMP phosphodiesterase activity mediates renal resistance to ANP in rats with bile duct ligation  Xi-Ping Ni, Massy Safai, David G. Gardner,
Effects of connexin-mimetic peptides on nitric oxide synthase- and cyclooxygenase- independent renal vasodilation  An S. De Vriese, M.D., Ph.D., Johan.
Volume 68, Issue 4, Pages (October 2005)
Volume 57, Issue 1, Pages (January 2000)
Volume 71, Issue 4, Pages (February 2007)
Volume 80, Issue 3, Pages (August 2011)
Douglas G Matsell, Colin T White  Kidney International 
Volume 69, Issue 5, Pages (March 2006)
Yasunori Kitamoto, Katsuhiko Matsuo, Kimio Tomita  Kidney International 
Evidence for impaired assimilation of protein in chronic renal failure
Renal phenotype of low kallikrein rats
Inhibition of pressure natriuresis in mice lacking the AT2 receptor
Silvia B. Campos, Lucia H.K. Rouch, Antonio C. Seguro 
Volume 80, Issue 10, Pages (November 2011)
Volume 70, Issue 3, Pages (August 2006)
Renal blood flow in experimental septic acute renal failure
Volume 62, Issue 5, (November 2002)
Miguel G. Salom, Bárbara Bonacasa  Kidney International 
Volume 61, Issue 1, Pages (January 2002)
Glomerular filtration rate via plasma iohexol disappearance: Pilot study for chronic kidney disease in children  G.J. Schwartz, S. Furth, S.R. Cole, B.
Volume 53, Issue 5, Pages (May 1998)
Quantitative estimation of renal blood flow by power Doppler ultrasonography in renovascular hypertensive dogs  Tetsumasa Miyajima, Hiroshi Yokoyama,
Temporal adaptation of tubuloglomerular feedback: Effects of COX-2
Volume 61, Issue 4, Pages (April 2002)
The effect of a shift in sodium intake on renal hemodynamics is determined by body mass index in healthy young men  J.A. Krikken, A.T. Lely, S.J.L. Bakker,
The Ebf1 knockout mouse and glomerular maturation
Presentation transcript:

Volume 65, Issue 2, Pages 564-574 (February 2004) Acute renal hemodynamic effects of dimanganese decacarbonyl and cobalt protoporphyrin  Begoña Arregui, Bernardo López, Miguel García Salom, Fernando Valero, Concepción Navarro, Francisco J. Fenoy  Kidney International  Volume 65, Issue 2, Pages 564-574 (February 2004) DOI: 10.1111/j.1523-1755.2004.00409.x Copyright © 2004 International Society of Nephrology Terms and Conditions

Figure 1 Top: Effects of Co(III)Protoprophyrin IX (CoPP) and Sn Protoporphyrin IX (SnPP) on heme oxygenase (HO) activity in renal homogenates. Middle: Effect of an intrarenal infusion of the CO donor Mn2(CO)10 on blood carboxyhemoglobin concentration (Carboxy Hb) and urinary cGMP excretion. *Indicates significant difference from control. Bottom: Effects of an intravenous infusion of CoPP on plasma bilirubin concentration. *Indicates significant difference from control. Kidney International 2004 65, 564-574DOI: (10.1111/j.1523-1755.2004.00409.x) Copyright © 2004 International Society of Nephrology Terms and Conditions

Figure 2 Effects of Co(III)Protoporphyrin IX (CoPP, 16, 80, 160, 800, and 1600nmol · kg-1· min-1, experimental periods E1-E5), Mn2(CO)10 (80nmol · kg-1· min-1 during five consecutive 30-minute periods, from E1 to E5), or CoPP (same doses) + Mn2(CO)10 (80nmol · kg-1· min-1) on renal blood flow (RBF), glomerular filtration rate (GFR), urine flow (UV) and sodium excretion (UNaV).§Indicates a significant difference between the corresponding values in the CoPP and the CoPP + Mn2(CO)10 groups; †indicates significant difference from the corresponding value in the time control group. Kidney International 2004 65, 564-574DOI: (10.1111/j.1523-1755.2004.00409.x) Copyright © 2004 International Society of Nephrology Terms and Conditions

Figure 3 Effects of Co(III)Protoporphyrin IX (CoPP, 16, 80, 160, 800, and 1600nmol · kg-1· min-1, experimental periods E1-E5) or Mn2(CO)10 (80nmol · kg-1· min-1 during five consecutive 30-minute periods, from E1 to E5) on cGMP urinary excretion.†Indicates significant difference from the corresponding value in the time control group. Kidney International 2004 65, 564-574DOI: (10.1111/j.1523-1755.2004.00409.x) Copyright © 2004 International Society of Nephrology Terms and Conditions

Figure 4 Effects of Co(III)Protoporphyrin IX (CoPP, 16, 80, 160, 800, and 1600nmol · kg-1· min-1, experimental periods E1-E5) or Sn Protoporphyrin IX (SnPP, same doses) on renal blood flow (RBF).*Indicates significant difference from the basal period of the same group. Kidney International 2004 65, 564-574DOI: (10.1111/j.1523-1755.2004.00409.x) Copyright © 2004 International Society of Nephrology Terms and Conditions

Figure 5 Top: Effects of CoPP (160 and 800nmol · kg-1· min-1) or NAME (160nmol · kg-1· min-1) on renal cortical NO concentration.*Indicates a significant difference from the basal period; ‡indicates a significant difference from the immediately preceding period. Middle: Effects of Mn2(CO)10 (80nmol · kg-1· min-1), CoPP (800nmol · kg-1· min-1) + Mn2(CO)10 (80nmol · kg-1· min-1), or NAME (160nmol · kg-1· min-1) on renal cortical NO concentration. *Indicates a significant difference from the basal period; ‡indicates a significant difference from the Mn2(CO)10+ CoPP period. Bottom: Effects of Co(III)Protoporphyrin IX (CoPP, 16, 80, 160, 800, and 1600nmol · kg-1· min-1, experimental periods E1-E5), Mn2(CO)10 (80nmol · kg-1· min-1 during five consecutive 30-minute periods, from E1 to E5), or CoPP (same doses) + Mn2(CO)10 (80nmol · kg-1· min-1) on renal NOx (nitrates+nitrites) excretion (U.NOx). §Indicates a significant difference between the corresponding values in the CoPP and the CoPP+Mn2(CO)10 groups; †indicates significant difference from the corresponding value in the time control group. Kidney International 2004 65, 564-574DOI: (10.1111/j.1523-1755.2004.00409.x) Copyright © 2004 International Society of Nephrology Terms and Conditions

Figure 6 Top: Effects of Co(III)Protoporphyrin IX (CoPP160: 160nmol · kg-1· min-1, CoPP800: 800nmol · kg-1· min-1) on renal blood flow (RBF) and renal NO concentration (Renal [NO]). Middle: Renal and rectal temperatures during the intrarenal infusion of Co(III)Protoporphyrin IX (same doses). Bottom: Correlation between RBF and Renal [NO] during control conditions and also during the administration of Co(III)Protoporphyrin IX (160 and 800nmol · kg-1· min-1). The data points used are the same depicted in the top graph. Kidney International 2004 65, 564-574DOI: (10.1111/j.1523-1755.2004.00409.x) Copyright © 2004 International Society of Nephrology Terms and Conditions

Figure 7 Effects of Co(III)Protoporphyrin IX (CoPP, 80, 160, and 800nmol · kg-1· min-1), or l-NAME (37nmol · kg-1· min-1 for 30 minutes followed by 0.37nmol · kg-1· min-1 throughout the experiment) + CoPP (same doses) on renal blood flow (RBF), glomerular filtration rate (GFR), urine flow (UV), and sodium excretion (UNaV). The absolute values for the basal periods correspond to the values in columns 4, 6, 8, and 10 of Table 1. *Indicates a significant difference from the basal period of the same group; §indicates a significant difference between the corresponding values in the CoPP and the l-NAME + CoPP groups. Kidney International 2004 65, 564-574DOI: (10.1111/j.1523-1755.2004.00409.x) Copyright © 2004 International Society of Nephrology Terms and Conditions