Status of HICUM integration in circuit simulators

Slides:



Advertisements
Similar presentations
SiGe BiCMOS Device Modeling MURTY, SHERIDAN,AHLGREN, HARAMEHicum Users Group Meeting (BCTM2002) 1 Evaluation of HiCUM for Modeling DC, S-parameter and.
Advertisements

Common Emitter Amplifier. Design Rules V RE should be > 100 mV.
06/16/2004 Arasch Lagies Jörg Berkner Ramana M. Malladi Kim M. Newton, Scott M. Parker Page 1 N e v e r s t o p t h i n k i n g. Secure Mobile Solutions.
CADENCE CONFIDENTIAL Hicum Model in Spectre Diana Moncoqut, R&D manager June 4, 2004.
ELEC 4121 RF Amplifier Simulation and Design ELEC 412 Fall 2004.
Low Noise Amplifier. DSB/SC-AM Modulation (Review)
10/6/2004EE 42 fall 2004 lecture 161 Lecture #16 Bipolar transistors Reading: transistors Bipolar: chapter 6 MOS: chapter 14.
Reliable HICUM implementation in Eldo Mohamed Selim Device Modeling Team Mentor Graphics HICUM Workshop, June
Bertrand Ardouin Thomas Zimmer Michael Schröter XMOD Technologies: Hicum toolkit & extraction services HICUM Workshop, June 6 - 7, Dresden.
Application of HICUM and TRADICA at JazzSemi 2002 BCTM HICUM User’s Meeting.
MEMORY GENERATORS MEMPRO Instructor: Dr. Anthony Johnson Presented by: Rajesh Natarajan Motheeswara Salla.
Lab 1 LTspice Intro EC538 Selected Topics in Electronics 1 Eng. Nihal Tawfik.
Chapter 4 Bipolar junction transistor Ir. Dr. Rosemizi Abd Rahim 1 Ref: Electronic Devices and Circuit Theory, 10/e, Robert L. Boylestad and Louis Nashelsky.
Chapter 4 DC Biasing–BJTs
Recall Lecture 10 Introduction to BJT 3 modes of operation
Draw input and output characteristic of a transistor in CB mode
Recall Last Lecture Biasing of BJT Applications of BJT
Chapter 3: Bipolar Junction Transistors
Bipolar Junction Transistor Circuit Analysis
EKT104 ANALOG ELECTRONIC CIRCUITS [LITAR ELEKTRONIK ANALOG] BASIC BJT AMPLIFIER (PART I) DR NIK ADILAH HANIN BINTI ZAHRI
V-I characteristics of a transistor
DEPARTMENT OF COMPUTER SCIENCE
Lecture 4 Bipolar Junction Transistors (BJTs)
Bipolar Junction Transistors (BJT)
Lecture 10 Bipolar Junction Transistor (BJT)
Bipolar Junction Diode & DC Mr. Zeeshan Ali, Asst. Professor
Lecture 25 OUTLINE The Bipolar Junction Transistor Introduction
Chapter 4 Bipolar Junction Transistor
TRANSISTOR.
EELE 2321 – Electronics Spring, 2013 Bipolar Junction Transistor (BJT) Structure Eng. Wazen M. Shbair.
Bipolar Junction Transistor
POWER AMPLIFIER Concept of Power Amplifier Power BJTs Power MOSFETs
Introduction to BJT Amplifier
Three Regions.
ac Load Line Analysis Maximum Symmetrical Swing
Chapter 8 Bipolar Junction Transistors
Professor Ronald L. Carter
Recall Lecture 11 DC Analysis and Load Line
Professor Ronald L. Carter
Recall Lecture 10 DC analysis of BJT
Professor Ronald L. Carter
Lecture 24 OUTLINE The Bipolar Junction Transistor Introduction
Recall Lecture 12 Voltage Transfer Characteristics Biasing of BJT
Transistor Bias Section
Recall Lecture 11 DC Analysis and Load Line
Sedr42021_p03003a.jpg. sedr42021_p03003a.jpg sedr42021_p03003a.jpg.
Recall Lecture 10 Introduction to BJT 3 modes of operation
Professor Ronald L. Carter
Lecture 25 OUTLINE The Bipolar Junction Transistor Introduction
HICUM evaluation Cedric Pujol – Analog and Mixed Signal Flows
Bipolar Junction Transistor Circuit Analysis
Professor Ronald L. Carter
Professor Ronald L. Carter
Recall Last Lecture Introduction to BJT Amplifier
Counter Integrated Circuits (I.C.s)
Recall Last Lecture DC Analysis and Load Line
Lecture 11 Bipolar Amplifiers (1).
LECTURE # 7 BIPOLAR JUNCTION TRANSISTOR
Lecture 12 Bipolar Amplifiers (1).
Chapter 4 Bipolar Junction Transistor
Using PSpice to check your calculations
Department of Electronics
Professor Ronald L. Carter
Professor Ronald L. Carter
BY: Sai Kiran Reddy Dwarampudi
DC Biasing Circuits.
Recall Last Lecture DC Analysis and Load Line
Semiconductor Device Modeling & Characterization Lecture 18
Recall Lecture 11 DC Analysis and Load Line
Bipolar Junction Transistors
Presentation transcript:

Status of HICUM integration in circuit simulators HICUM users meeting in Monterey September 2002

Sophie Lavenir – Hicum Report 08/05/2019 Basic tests : 2 different sets of parameters, one with self heating. 3 test benches for each set of parameters at 27 and 150ºC: Forward Gummel simulation + sweep at Vbc [-0.5V,1.5V,0.5V]. Ic vs. Vce characteristic at Ib=cst. (Ib [0.1u,10.1u,1u]) fT vs. Vbe characteristic. The comparisons are made with Device, Pr. Schroter’s simulator. The tested simulators are : Eldo, Spectre, Aplac, Hspice and ADS. => ST Target : less than 0.1% difference. May-19 Sophie Lavenir – Hicum Report

Sophie Lavenir – Hicum Report Tools tested Simulator Tested version Availability Eldo 5.8 Available Spectre IC446 MSR8 Aplac 7.70d Hspice 2002_2_1 ADS 2002.C May-19 Sophie Lavenir – Hicum Report

Device/Eldo : Gummel Plot without self-heating 120 Beta 250 Beta temp : 150ºC Device Eldo temp : 27ºC Device Eldo 0.2 1.2 Vbe (V) 0.2 1.2 Vbe (V) Max of error : 0.12% Max of error : <0.1% May-19 Sophie Lavenir – Hicum Report

Device/Eldo : Gummel Plot with self heating 180 Beta 90 Beta Device Eldo temp : 27ºC temp : 150ºC Device Eldo 0.2 1.2 Vbe (V) Vbe (V) 0.2 1.2 Max of error : <0.1% Max of error : 0.11% May-19 Sophie Lavenir – Hicum Report

Device/Eldo : Ic vs Vce Ib=cst Plot without self-heating 1.2 IC (mA) 2.5 IC (mA) Device Eldo temp : 27ºC Device Eldo temp : 150ºC 3 Vce(V) 3 Vce(V) Max of error : <0.01% Max of error : <0.01% May-19 Sophie Lavenir – Hicum Report

Device/Eldo : Ic vs Vce Ib=cst Plot with self heating 1.6 IC (mA) 0.7 IC (mA) temp : 27ºC Device Eldo Device Eldo temp : 150ºC 3 Vce(V) 3 Vce(V) Max of error : <0.01% Max of error : 0.01% May-19 Sophie Lavenir – Hicum Report

Device/Eldo : ft Plot without self-heating 0.1 100 ft (GHz) 3 50 ft (GHz) temp : 27ºC Device Eldo Device Eldo temp : 150ºC 0.75 1 Vbe(V) 0.65 0.9 Vbe(V) Max of error : <0.01% Max of error : <0.01% May-19 Sophie Lavenir – Hicum Report

Device/Eldo : ft Plot with self heating 1 100 ft (GHz) 2 50 ft (GHz) Device Eldo temp : 27ºC Device Eldo temp : 150ºC 0.75 1 Vbe(V) 0.65 0.9 Vbe(V) Max of error : <0.03% Max of error : <0.03% May-19 Sophie Lavenir – Hicum Report

Device/Spectre : Gummel Plot without self-heating 120 Beta 250 Beta Device Spectre temp : 27ºC temp : 150ºC Device Spectre 0.2 1.2 Vbe (V) 0.2 1.2 Vbe (V) Max of error : 0.02% Vbe>0.25V : <0.01% Max of error : 1% May-19 Sophie Lavenir – Hicum Report

Device/Spectre : Gummel Plot with self heating 180 Beta 90 Beta Device Spectre temp : 150ºC temp : 27ºC Device Spectre 0.2 1.2 Vbe (V) 0.2 1.2 Vbe (V) Max of error : < 0.1% Max of error : 0.1 % May-19 Sophie Lavenir – Hicum Report

Device/Spectre : Ic vs Vce Ib=cst Plot without self-heating 1.2 IC (mA) Device Spectre 2.5 IC (mA) temp : 27ºC Device Spectre temp : 150ºC 3 Vce(V) 3 Vce(V) Max of error : 0.1% Vce>0.2V : <0.01% Max of error : 0.07% Vce>0.2V : <0.01% May-19 Sophie Lavenir – Hicum Report

Device/Spectre : Ic vs Vce Ib=cst Plot with self-heating 1.6 IC (mA) 0.7 IC (mA) Device Spectre temp : 150ºC temp : 27ºC Device Spectre 3 Vce(V) 3 Vce(V) Max of error : <0.1 % Max of error : 0.1 % Vbe>0.2V : 0.01% May-19 Sophie Lavenir – Hicum Report

Device/Spectre : ft Plot without self-heating 0.1 100 ft (GHz) 3 50 ft (GHz) Device Spectre temp : 27ºC Device Spectre temp : 150ºC 0.75 1 Vbe(V) 0.65 0.9 Vbe(V) Max of error : <0.02% Max of error : <0.01% May-19 Sophie Lavenir – Hicum Report

Device/Spectre : ft Plot with self heating 1 100 ft (GHz) 2 50 ft (GHz) Device Spectre Device Spectre temp : 27ºC temp : 150ºC 0.75 1 Vbe(V) 0.65 0.9 Vbe(V) Max of error : 4% Max of error : 2% May-19 Sophie Lavenir – Hicum Report

Device/Aplac : Gummel Plot without self-heating 120 Beta 250 Beta Device Aplac temp : 27ºC temp : 150ºC Device Aplac 0.2 1.2 Vbe (V) 0.2 1.2 Vbe (V) Max of error : 0.3% Vbe>0.25V : <0.1% Max of error : 3% Vbe<0.6V : <0.1% May-19 Sophie Lavenir – Hicum Report

Device/Aplac : Gummel Plot with self-heating 180 Beta 100 Beta Device Aplac temp : 27ºC temp : 150ºC Device Aplac 0.2 1.2 Vbe (V) 0.2 1.2 Vbe (V) Max of error : 15% 0.25V<Vbe<0.8V : <0.1% Max of error : 25% May-19 Sophie Lavenir – Hicum Report

Device/Aplac : Ic vs Vce Ib=cst Plot without self-heating 1.2 IC (mA) 2.5 IC (mA) Device Aplac temp : 27ºC Device Aplac temp : 150ºC 3 Vce(V) 3 Vce(V) Max of error : 1% Vce>0.1V : <0.01% Max of error : 10% May-19 Sophie Lavenir – Hicum Report

Device/Aplac : Ic vs Vce Ib=cst Plot with self-heating 1.6 IC (mA) 0.8 IC (mA) Device Aplac temp : 27ºC Device Aplac temp : 150ºC 3 Vce(V) 3 Vce(V) Max of error : 1% Vbe<2V : <0.1% Max of error : 40% May-19 Sophie Lavenir – Hicum Report

Device/Aplac : ft Plot without self-heating 0.1 100 ft (GHz) 3 50 ft (GHz) Device Aplac Device Aplac temp : 27ºC temp : 150ºC 0.75 1 Vbe(V) 0.65 0.9 Vbe(V) Max of error : 3% Max of error : 4% error : 3% May-19 Sophie Lavenir – Hicum Report

Device/Aplac : ft Plot with self heating 1 100 ft (GHz) 2 50 ft (GHz) Device Aplac Device Aplac temp : 27ºC temp : 150ºC 0.75 1 Vbe(V) 0.65 0.9 Vbe(V) Max of error : 60% Max of error : 70% May-19 Sophie Lavenir – Hicum Report

Device/Hspice : Gummel Plot without self-heating 120 Beta 250 Beta Device Hspice temp : 27ºC temp : 150ºC Device Hspice 0.2 1.2 Vbe (V) 0.2 1.2 Vbe (V) Max of error : 1% Vbe>0.25V : <0.1% Max of error : <0.01% May-19 Sophie Lavenir – Hicum Report

Device/Hspice : Gummel Plot with self-heating 180 Beta 90 Beta Device Hspice temp : 27ºC temp : 150ºC Device Hspice 0.2 1.2 Vbe (V) 0.2 Vbe (V) 1.2 Max of error : 0.1% Max of error : 0.1% May-19 Sophie Lavenir – Hicum Report

Device/Hspice : Ic vs Vce Ib=cst Plot without self-heating 1.2 IC (mA) 2.5 IC (mA) Device Hspice temp : 27ºC Device Hspice temp : 150ºC temp : 27ºC 3 Vce(V) 3 Vce(V) Max of error : <0.01% Max of error : <0.01% May-19 Sophie Lavenir – Hicum Report

Device/Hspice : Ic vs Vce Ib=cst Plot with self-heating 1.6 IC (mA) 0.7 IC (mA) Device Hspice temp : 27ºC Device Hspice temp : 150ºC 3 Vce(V) 3 Vce(V) Max of error : 1% Vce>0.1% : <0.01% Max of error : <0.03% May-19 Sophie Lavenir – Hicum Report

Ft plot : problem with Hspice The results presented in the following slides are imprecise. Precisions on the ft test : The instantiation of an input and an output port is required. Until 0.5% of error for a S param. in dB between Hspice and the other simulators for a circuit composed of passive elements only. Problem of port instantiation reported to Synopsys. May-19 Sophie Lavenir – Hicum Report

Device/Hspice : ft Plot without self-heating 0.1 100 ft (GHz) 3 50 ft (GHz) Device Hspice temp : 27ºC Device Hspice temp : 150ºC 0.75 1 Vbe(V) 0.65 0.9 Vbe(V) Max of error : 1% Max of error : 0.8% May-19 Sophie Lavenir – Hicum Report

Device/Hspice : ft Plot with self-heating 1 100 ft (GHz) 2 50 ft (GHz) Device Hspice Device Hspice temp : 27ºC temp : 150ºC 0.75 1 Vbe(V) 0.65 0.9 Vbe(V) Max of error : 2% Max of error : 8% May-19 Sophie Lavenir – Hicum Report

Device/ADS : Gummel Plot without self-heating 0.2 1.2 Vbe (V) 6e5 Beta 120 Beta Device ADS temp : 27ºC Device ADS temp : 150ºC 0.2 1.2 Vbe (V) Max of error : 8% Max of error : >100% at Vbc=-0.5V Other Vbc : 1% < error <10% May-19 Sophie Lavenir – Hicum Report

Device/ADS : Gummel Plot with self heating Beta 180 Device ADS temp : 27ºC Device ADS temp : 150ºC Beta 0.2 Vbe (V) 1.2 0.2 1.2 Vbe (V) Max of error : >10% Vbe < 0.8V : <0.03% Max of error : >100% for Vbc=0.5V Other Vbc : max of error 30% May-19 Sophie Lavenir – Hicum Report

Device/ADS : Ic vs Vce Ib=cst Plot without self-heating 1.2 IC (mA) Device ADS 2.5 IC (mA) temp : 27ºC Device ADS temp : 150ºC 3 Vce(V) 3 Vce(V) Max of error : >1% Vce>0.5V :0.01% Max of error : >90% Vce>0.5V : 1% May-19 Sophie Lavenir – Hicum Report

Device/ADS : Ic vs Vce Ib=cst Plot with self-heating 1.6 IC (mA) 0.7 IC (mA) Device ADS temp : 27ºC Device ADS temp : 150ºC Max of error : 8% Error : 2% 3 Vce(V) 3 Vce(V) 3 Vce(V) Max of error : 100% Vbe>0.3V : 10% May-19 Sophie Lavenir – Hicum Report

Device/ADS : ft Plot without self-heating 0.1 100 ft (GHz) 3 50 ft (GHz) Device ADS temp : 27ºC Device ADS temp : 150ºC 0.75 1 Vbe(V) 0.65 0.9 Vbe(V) Max of error : 0.9% Max of error : 3% May-19 Sophie Lavenir – Hicum Report

Device/ADS : ft Plot with self heating 0.1 100 ft (GHz) 2 50 ft (GHz) Device ADS Device ADS temp : 27ºC temp : 150ºC 0.75 1 Vbe(V) 0.65 0.9 Vbe(V) Max of error : 60% Max of error : 36% May-19 Sophie Lavenir – Hicum Report

Sophie Lavenir – Hicum Report Comparison Sum-up Simulator Tested version Comments + improvement since june 2002 report Eldo 5.8 Good results in DC + ft. Spectre IC446 MSR7 Good results in DC. (improvement at 150ºC) Discrepancies for the ft simulation with self-heating. Aplac 7.70d Still too big discrepancies especially at 150ºC and with self-heating. (little improvement at low Vbe) Hspice 2002_2_1 Good results in DC (very big improvement + good implementation of self-heating). Discrepancies for the ft simulation, see also the problem of port instantiation. ADS 2002.C No improvement since previous version. Still discrepancies + big problems at 150ºC and with self-heating. May-19 Sophie Lavenir – Hicum Report