Automatic Analysis of Edge Pedestal Gradient Degradation during ELMs

Slides:



Advertisements
Similar presentations
Glenn Bateman Lehigh University Physics Department
Advertisements

Examples of ITER CODAC requirements for diagnostics
Physics Basis of FIRE Next Step Burning Plasma Experiment Charles Kessel Princeton Plasma Physics Laboratory U.S.-Japan Workshop on Fusion Power Plant.
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
9th TTF Spain September 11, 2002 B. J. Peterson, NIFS, Japan page 1 Radiative Collapse and Density Limit in the Large Helical Device.
Short wavelength ion temperature gradient driven instability in toroidal plasmas Zhe Gao, a) H. Sanuki, b) K. Itoh b) and J. Q. Dong c) a) Department of.
ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
Chalkidikhi Summer School Plasma turbulence in tokamaks: some basic facts… W.Fundamenski UKAEA/JET.
Conference on Computational Physics 30 August 2006 Transport Simulation for the Scrape-Off Layer and Divertor Plasmas in KSTAR Tokamak S. S. Kim and S.
The Physics Base for ITER and DEMO Hartmut Zohm Max-Planck-Institut für Plasmaphysik, Garching, Germany EURATOM Association Hauptvortrag given at AKE DPG.
Transmission grating based XUV imaging spectrometer for W and other high Z emission Space and time resolved spectra from ~ Å Few Å spectral resolution.
R Sartori - page 1 20 th IAEA Conference – Vilamoura Scaling Studies of ELMy H-modes global and pedestal confinement at high triangularity in JET R Sartori.
Integrated Effects of Disruptions and ELMs on Divertor and Nearby Components Valeryi Sizyuk Ahmed Hassanein School of Nuclear Engineering Center for Materials.
March 26, 2008Janos Marki: ELM-induced divertor heat loads1/11 ELM-induced divertor heat loads on TCV J. Marki, R. A. Pitts and TCV Team 2008 Annual Meeting.
FOM - Institute for Plasma Physics Rijnhuizen Association Euratom-FOM Diagnostics and Control for Burning Plasmas Introduction Tony Donné Information taken.
11 th European Fusion Physics Conference, Aix-en-Provence, France, Samuli Saarelma, Edge stability in tokamak plasmas Edge stability in tokamak.
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
Introduction to Plasma- Surface Interactions G M McCracken Hefei, October 2007.
Predictive Integrated Modeling Simulations Using a Combination of H-mode Pedestal and Core Models Glenn Bateman, Arnold H. Kritz, Thawatchai Onjun, Alexei.
Y. Sakamoto JAEA Japan-US Workshop on Fusion Power Plants and Related Technologies with participations from China and Korea February 26-28, 2013 at Kyoto.
Recent JET Experiments and Science Issues Jim Strachan PPPL Students seminar Feb. 14, 2005 JET is presently world’s largest tokamak, being ½ linear dimension.
10th ITPA TP Meeting - 24 April A. Scarabosio 1 Spontaneous stationary toroidal rotation in the TCV tokamak A. Scarabosio, A. Bortolon, B. P. Duval,
PIC simulations of the propagation of type-1 ELM-produced energetic particles on the SOL of JET D. Tskhakaya 1, *, A. Loarte 2, S. Kuhn 1, and W. Fundamenski.
Measurement Requirements and Assessment of Measurement Capability David Johnson, Réjean Boivin, Ken Young.
1 Integrated Simulation Code for Burning Plasma Analysis T.Ozeki, N.Aiba, N.Hayashi, T.Takizuka, M.Sugihara 2, N.Oyama JAERI 、 ITER-IT 2 IEA Large Tokamak.
H-mode characteristics close to L-H threshold power ITPA T&C and Pedestal meeting, October 09, Princeton Yves Martin 1, M.Greenwald, A.Hubbard, J.Hughes,
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
Overview of MHD and extended MHD simulations of fusion plasmas Guo-Yong Fu Princeton Plasma Physics Laboratory Princeton, New Jersey, USA Workshop on ITER.
Japanese Efforts on the Integrated Modeling - Part II : JAEA Contribution - T. Takizuka (JAEA) acknowledgments : T. Ozeki, N. Hayashi, N. Aiba, K. Shimizu,
12/03/2013, Praga 1 Plasma MHD Activity Observations via Magnetics Diagnostics: Magnetic island Analysis Magnetic island Analysis Frederik Ostyn (UGent)
Japan Atomic Energy Agency, Naka Fusion Institute H モード周辺プラズマの無次元量解析 Japan Atomic Energy Agency 浦野 創 原子力機構 那珂核融合研究所.
October Milano Core-Pedestal Energy Confinement. Empirical Scaling Laws and "stiff" profiles. A. Jacchia 1, F. De Luca 2 1 Consiglio Nazionale.
Discussions and Summary for Session 1 ‘Transport and Confinement in Burning Plasmas’ Yukitoshi MIURA JAERI Naka IEA Large Tokamak Workshop (W60) Burning.
NSTX-U NSTX-U PAC-31 Response to Questions – Day 1 Summary of Answers Q: Maximum pulse length at 1MA, 0.75T, 1 st year parameters? –A1: Full 5 seconds.
High  p experiments in JET and access to Type II/grassy ELMs G Saibene and JET TF S1 and TF S2 contributors Special thanks to to Drs Y Kamada and N Oyama.
ITPA DSOL meeting, Toronto W. Fundamenski9/11/2006 TF-E Introduction to ELM power exhaust: Overview of experimental observations W.Fundamenski Euratom/UKAEA.
1 Plasma Rotation and Momentum Confinement – DB ITPA - 1 October 2007 by Peter de Vries Plasma Rotation and Momentum Confinement Studies at JET P.C. de.
Nonlinear interactions between micro-turbulence and macro-scale MHD A. Ishizawa, N. Nakajima, M. Okamoto, J. Ramos* National Institute for Fusion Science.
J M Lopez 1 (of 17) 7 th Workshop on Fusion.., Frascati March, Simulator of the JET real-time disruption predictor J.M. Lopez*, S. Dormido-Canto,
1 Instabilities in the Long Pulse Discharges on the HT-7 X.Gao and HT-7 Team Institute of Plasma Physics, Chinese Academy of Sciences, P.O.Box 1126, Hefei,
Edge and Internal Transport Barrier Formations in CHS S. Okamura, T. Minami, T. Akiyama, T. Oishi 1, A. Fujisawa, K. Ida, H. Iguchi, M. Isobe, S. Kado.
ASIPP HT-7 The effect of alleviating the heat load of the first wall by impurity injection The effect of alleviating the heat load of the first wall by.
HT-7 ASIPP The Influence of Neutral Particles on Edge Turbulence and Confinement in the HT-7 Tokamak Mei Song, B. N. Wan, G. S. Xu, B. L. Ling, C. F. Li.
Physics of fusion power Lecture 12: Diagnostics / heating.
EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT Task Force S1 J.Ongena 19th IAEA Fusion Energy Conference, Lyon Towards the realization on JET of an.
RFX-mod Program Workshop, Padova, January Current filaments in turbulent magnetized plasmas E. Martines.
RFX workshop / /Valentin Igochine Page 1 Control of MHD instabilities. Similarities and differences between tokamak and RFP V. Igochine, T. Bolzonella,
PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION International Plan for ELM Control Studies Presented by M.R. Wade (for A. Leonard)
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Challenges for Fusion Theory and Explosive Behaviour in Plasmas Steve Cowley,
1 L.W. Yan, Overview on HL-2A, 23rd IAEA FEC, Oct. 2010, Daejeon, Republic of Korea HL-2A 2 nd Asia-Pacific Transport Working Group Meeting ELM mitigation.
1 Feature of Energy Transport in NSTX plasma Siye Ding under instruction of Stanley Kaye 05/04/09.
Confinement & Transport Plan Classical theory of confinement and transport. o Diffusion equation Particle diffusion in a magnetic field.
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Dependence of Pedestal Structure on Ip and Bt A. Diallo, R. Maingi, S. Zweben, B.P. LeBlanc, B. Stratton, J. Menard, S. Gerhardt, J. Canick, A. McClean,
Enhanced D  H-mode on Alcator C-Mod presented by J A Snipes with major contributions from M Greenwald, A E Hubbard, D Mossessian, and the Alcator C-Mod.
ZHENG Guo-yao, FENG Kai-ming, SHENG Guang-zhao 1) Southwestern Institute of Physics, Chengdu Simulation of plasma parameters for HCSB-DEMO by 1.5D plasma.
1 Peter de Vries – ITPA T meeting Culham – March 2010 P.C. de Vries 1,2, T.W. Versloot 1, A. Salmi 3, M-D. Hua 4, D.H. Howell 2, C. Giroud 2, V. Parail.
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
Energetic ion excited long-lasting “sword” modes in tokamak plasmas with low magnetic shear Speaker:RuiBin Zhang Advisor:Xiaogang Wang School of Physics,
Member of the Helmholtz Association Meike Clever | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ Graduiertenkolleg 1203 Dynamics.
Mechanisms for losses during Edge Localised modes (ELMs)
Pellet injection in ITER Model description Model validation
L-H power threshold and ELM control techniques: experiments on MAST and JET Carlos Hidalgo EURATOM-CIEMAT Acknowledgments to: A. Kirk (MAST) European.
2/13 Introduction Knowledge of the influence of the hydrogen isotope on H-mode confinement is essential for accurately projecting the energy confinement.
I-mode regime has many attractive features for fusion:
Validation of theory based transport models
Wide-Pedestal QH-mode Initiated and Sustained with Zero Injected NBI torque throughout, and Sustained with Dominant Electron Heating (77% ECH power) Achieved.
[EX / P7-8] 27th IAEA Fusion Energy Conference – J. Jang, et. al
No ELM, Small ELM and Large ELM Strawman Scenarios
Presentation transcript:

Automatic Analysis of Edge Pedestal Gradient Degradation during ELMs S. González, J. Vega, A. Murari, A. Pereira and JET-EFDA contributors 7th Workshop on Fusion Data Processing, Validation and Analysis, March 2012

Introduction (I) H-mode features [1]: Improved particle confinement Existence of an External Transport Barrier (ETB) Existence of Edge Localised Modes (ELMs) [1] F. Wagner et al., Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX tokamak, Physical Review Letters 49 (19), pages 1408-1412, 1982

Introduction (II) ELMs [2]: Instabilities at the plasma edge H-mode plasmas At each burst: The ETB is reduced The plasma confinement degrades Quantify the edge pedestal gradient degradation during ELMs [2] H. Zohm, Edge localized modes (ELMs), Plasma Physics and Controlled Fusion 38, pages 105-128, 1996

Edge Pedestal Gradient (I): ELMs location UMEL [4] Dα peaks Diamagnetic energy drops Automatic [3] S. González, J. Vega, A. Murari, A. Pereira, M. Beurskens and JET-EDA contributors, Automatic ELM location in JET using a Universal Multi-Event Locator, Fusion Science and Technology 58 (3), pages 755-762, 2010 [4] J. Vega, A. Murari, S. González and JET-EFDA contributors, A universal supprt vector machines based method for automatic event location in waveforms and video-movies: applications to massive nuclear fusion databases, Review of Scientific Instruments 81, 023505, 2010

Edge Pedestal Gradient (II): ET, SGT and SGB At each instant, two signals are considered: Electron Temperature (ET) profile Steep Gradient Temperature (SGT): difference of temperature between two consecutive radial points of ET Steep Gradient Baseline (SGB): mean value of the SGT between the plasma core and the ETB

Edge Pedestal Gradient (III): ET, SGT and SGB JET pulse 78072: L & H temperature profiles comparison a) b)

Edge Pedestal Gradient (IV): ELMs analysis SGTETB For each ELM burst: SGT is compared at two different times: At the ELM time (ELM) 2 ms before (ELM-0.002) SGT is measure at the ETB At the ELM time (SGTETBELM ) 2 ms before ( SGTETBELM-0.002)

Edge pedestal gradient (V): degradation ELM-0.002 ELM SGTETBELM-0.002 SGTETBELM

Edge Pedestal Gradient (VI): example ELM-0.002 ELM SGTETBELM-0.002 SGTETBELM

Edge Pedestal Gradient degradation results: Results (I) Edge Pedestal Gradient degradation results: # pulses analysed: 409 # ELMs analysed: 22486 Edge pedestal gradient degradation mean value: 33.98% # ELMs, degradation higher than 80%: 924, 4.11% # ELMs, degradation higher than 90%: 291 1.29%

Edge Pedestal Gradient (VII): evolution Edge Pedestal Gradient 2ms after the ELM Pulse 789072, time = 8.9951 s Mean degradation: 17.34 %

(degradation = 0 not shown, 6380 ELMs) Results (II) Distribution of the edge pedestal gradient degradation of analysed ELMs Degradation between ELM time -0.002 and ELM time+0.002 Mean Value: 17.34% (degradation = 0 not shown, 6380 ELMs) Degradation between ELM time -0.002 and ELM time Mean Value: 33.98%

Thank you very much for your attention Questions?