Volume 133, Issue 1, Pages (April 2008)

Slides:



Advertisements
Similar presentations
A Histone H3 Lysine-27 Methyltransferase Complex Represses Lateral Root Formation in Arabidopsis thaliana  Gu Xiaofeng , Xu Tongda , He Yuehui   Molecular.
Advertisements

Biochemical Specialization within Arabidopsis RNA Silencing Pathways
Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis
Volume 28, Issue 3, Pages (November 2007)
DELLAs Modulate Jasmonate Signaling via Competitive Binding to JAZs
David J. Katz, T. Matthew Edwards, Valerie Reinke, William G. Kelly 
Volume 122, Issue 4, Pages (August 2005)
Volume 22, Issue 10, Pages (May 2012)
Volume 42, Issue 3, Pages (May 2011)
Hierarchical Rules for Argonaute Loading in Drosophila
Volume 13, Issue 1, Pages (July 2007)
Human Senataxin Resolves RNA/DNA Hybrids Formed at Transcriptional Pause Sites to Promote Xrn2-Dependent Termination  Konstantina Skourti-Stathaki, Nicholas J.
Suzanne Komili, Natalie G. Farny, Frederick P. Roth, Pamela A. Silver 
Volume 45, Issue 3, Pages (February 2012)
Volume 13, Issue 10, Pages (May 2003)
MiR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana  Jia-Wei Wang, Benjamin Czech, Detlef Weigel 
Volume 48, Issue 4, Pages (November 2012)
Volume 30, Issue 2, Pages (July 2014)
Edwards Allen, Zhixin Xie, Adam M. Gustafson, James C. Carrington  Cell 
Volume 50, Issue 3, Pages (May 2013)
Volume 48, Issue 5, Pages (December 2012)
Volume 4, Issue 2, Pages (February 2003)
A Two-Hit Trigger for siRNA Biogenesis in Plants
Volume 50, Issue 6, Pages (June 2013)
Volume 34, Issue 4, Pages (August 2015)
Volume 133, Issue 1, Pages (April 2008)
Liyuan Chen, Anne Bernhardt, JooHyun Lee, Hanjo Hellmann 
DNA Methylation Mediated by a MicroRNA Pathway
Slicing-Independent RISC Activation Requires the Argonaute PAZ Domain
Volume 17, Issue 1, Pages (July 2009)
Posttranscriptional Crossregulation between Drosha and DGCR8
Volume 10, Issue 7, Pages (July 2017)
Volume 18, Issue 10, Pages (May 2008)
BZR1 Positively Regulates Freezing Tolerance via CBF-Dependent and CBF- Independent Pathways in Arabidopsis  Hui Li, Keyi Ye, Yiting Shi, Jinkui Cheng,
AGO1 Homeostasis Entails Coexpression of MIR168 and AGO1 and Preferential Stabilization of miR168 by AGO1  Hervé Vaucheret, Allison C. Mallory, David.
Expression of a microRNA-Resistant Target Transgene Misrepresents the Functional Significance of the Endogenous microRNA: Target Gene Relationship  Junyan.
Matthew W Jones-Rhoades, David P Bartel  Molecular Cell 
Young-Hee Cho, Sang-Dong Yoo, Jen Sheen  Cell 
Volume 19, Issue 10, Pages (May 2009)
Volume 42, Issue 3, Pages (May 2011)
Volume 55, Issue 3, Pages (August 2014)
Volume 3, Issue 3, Pages (March 2013)
Wenwen Fang, David P. Bartel  Molecular Cell 
Volume 5, Issue 3, Pages (November 2013)
Volume 3, Issue 5, Pages (September 2010)
Volume 37, Issue 3, Pages (May 2016)
A miRNA Involved in Phosphate-Starvation Response in Arabidopsis
Arabidopsis WRKY45 Interacts with the DELLA Protein RGL1 to Positively Regulate Age-Triggered Leaf Senescence  Ligang Chen, Shengyuan Xiang, Yanli Chen,
Arabidopsis NF-YCs Mediate the Light-Controlled Hypocotyl Elongation via Modulating Histone Acetylation  Yang Tang, Xuncheng Liu, Xu Liu, Yuge Li, Keqiang.
Dan Yu, Rongdiao Liu, Geng Yang, Qiang Zhou  Cell Reports 
Volume 15, Issue 6, Pages (December 2008)
HOS1 Facilitates the Phytochrome B-Mediated Inhibition of PIF4 Function during Hypocotyl Growth in Arabidopsis  Ju-Heon Kim, Hyo-Jun Lee, Jae-Hoon Jung,
Volume 133, Issue 1, Pages (April 2008)
Volume 16, Issue 9, Pages (May 2006)
Volume 123, Issue 7, Pages (December 2005)
Volume 5, Issue 6, Pages (November 2012)
Junjie Li, Zhiyong Yang, Bin Yu, Jun Liu, Xuemei Chen  Current Biology 
Volume 15, Issue 1, Pages (July 2008)
Damien Garcia, Sarah A. Collier, Mary E. Byrne, Robert A. Martienssen 
Arabidopsis RPA2: A Genetic Link among Transcriptional Gene Silencing, DNA Repair, and DNA Replication  Taline Elmayan, Florence Proux, Hervé Vaucheret 
Influence of RdDM on DCL4 Transcript Isoform Expression.
DELLA Proteins Promote Anthocyanin Biosynthesis via Sequestering MYBL2 and JAZ Suppressors of the MYB/bHLH/WD40 Complex in Arabidopsis thaliana  Ye Xie,
A Splicing-Independent Function of SF2/ASF in MicroRNA Processing
Wang Long , Mai Yan-Xia , Zhang Yan-Chun , Luo Qian , Yang Hong-Quan  
The bHLH Transcription Factors MYC2, MYC3, and MYC4 Are Required for Jasmonate- Mediated Inhibition of Flowering in Arabidopsis  Houping Wang, Yang Li,
Volume 4, Issue 1, Pages (January 2011)
Effect of vd-sRNA on CalS12-like mRNA
Volume 150, Issue 1, Pages (July 2012)
Volume 11, Issue 7, Pages (July 2018)
Hierarchical Rules for Argonaute Loading in Drosophila
Presentation transcript:

Volume 133, Issue 1, Pages 128-141 (April 2008) Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in TAS3 Trans- Acting siRNA Formation  Taiowa A. Montgomery, Miya D. Howell, Josh T. Cuperus, Dawei Li, Jesse E. Hansen, Amanda L. Alexander, Elisabeth J. Chapman, Noah Fahlgren, Edwards Allen, James C. Carrington  Cell  Volume 133, Issue 1, Pages 128-141 (April 2008) DOI: 10.1016/j.cell.2008.02.033 Copyright © 2008 Elsevier Inc. Terms and Conditions

Figure 1 Functionality and Genetic Requirements of TAS3a-Based syn-tasiRNA (A) Organization of syn-tasiRNA constructs. The miR390-guided cleavage site is indicated by the arrow. The tasiRNA region is indicated by brackets. (B) Phenotypes of Col-0 and mutant plants containing empty vector, 35S:TAS3aPDS-1, and 35S:TAS3aPDS-2 (Ad = adaxial, Ab = abaxial). (C) Mean relative level ± SE of PDS mRNA in rosette tissue (Col-0 vector = 1.0). (D) Mean relative level ± SE of PDS mRNA in leaf midrib and lamina tissue (Col-0 vector = 1.0). (E) Mean relative level ± SE of syn-tasiRNA (Col-0 35S:TAS3aPDS-2 = 1.0). Inset shows small RNA blot data. (F) GUS activity in seedlings of Col-0 plants transformed with the indicated constructs. (G) Organization of HA-AGO7. (H) Mean relative levels ± SE of syn-tasiRNA with blot images for miR390 and syn-tasiRNA from one replicate (35S:MIR390a + 35S:TAS3aPDS-2 + 35S:HA-AGO7 = 1.0) from a transient assay in N. benthamiana. Cell 2008 133, 128-141DOI: (10.1016/j.cell.2008.02.033) Copyright © 2008 Elsevier Inc. Terms and Conditions

Figure 2 Requirement and Specificity of miR390 for Syn-tasiRNA Formation (A) The 3′ and/or 5′ miR390 target sites in 35S:TAS3aPDS-2 were substituted for miR171 target sites. The proportion of cloned 5′ RACE products corresponding to cleavage at the canonical position at each target site in Col-0 plants is indicated above the black arrows. 5′ RACE products from noncanonical positions at each target site are indicated by gray arrows, although proportions are not indicated. The percentages of plants that displayed photobleaching are shown next to representative images of rosettes (for each line, n ≥ 5 primary transformants analyzed). (B) Mean relative level ± SE of syn-tasiRNA (Col-0 35S:TAS3aPDS-2 = 1.0). Cell 2008 133, 128-141DOI: (10.1016/j.cell.2008.02.033) Copyright © 2008 Elsevier Inc. Terms and Conditions

Figure 3 AGO7 and miR390 Requirements for Processing of TAS3a-Derived Transcripts (A) 5′ RACE assay of cleavage of endogenous TAS3a transcripts. (B) Schematic for transient expression assay in N. benthamiana. (C) RNA blot assays for small RNAs, with mean relative levels ± SEs of syn-tasiRNA shown, and blot images shown for one replicate (35S:MIR171a + 35S:MIR390a + 35S:TAS3aPDS-2 + 35S:HA-AGO7 = 1.0). (D) 5′ RACE assay of miRNA-guided cleavage. Mean relative levels ± SEs of 3′ cleavage product accumulation corresponding to cleavage at the 3′ miRNA target sites, with gel images shown for one replicate (35S:MIR171a + 35S:MIR390a + 35S:TAS3aPDS-2 + 35S:HA-AGO7 = 1.0). (E) Summary of miR390 and AGO7 requirements for cleavage and syn-tasiRNA formation in modified TAS3a-based syn-tasiRNA transcripts. Cell 2008 133, 128-141DOI: (10.1016/j.cell.2008.02.033) Copyright © 2008 Elsevier Inc. Terms and Conditions

Figure 4 Small RNA Interactions with AGO1, AGO2, and AGO7 (A) Wild-type (Col-0) and zip-1 vector- and AGO7:HA-AGO7-transformed plants. Mean ± SE of leaf blade length/petiole length ratios for leaves 1–6 (n ≥ 17 for each line) are shown in the line graph. Mean relative levels ± SE of TAS3a tasiRNA (Col-0 vector-transformed = 1.0) are shown in the bar graph. (B) Analysis of Arabidopsis small RNA populations associated with HA-AGO7. Protein and RNA blot assays using input (in) and IP (HA) fractions are on the right of the flowchart. Enrichment or depletion of the indicated miRNA and tasiRNA families in the HA-AGO7 IP fraction relative to the input fraction is shown in the lower graph. (C) Protein and RNA blot assays using input (in) and IP (HA) fractions from N. benthamiana following coexpression of empty vector or 35S:HA-AGO7 and 35S:TAS3aPDS-2 or 35S:TAS1cPDS-2, and various 35S-promoter driven MIRNA constructs. (D) Protein and RNA blot assays using input (in) and IP (HA) fractions from N. benthamiana following coexpression of empty vector, 35S:HA-AGO1, 35S:HA-AGO7, or 35S:HA-AGO2 and various 35S-promoter-driven MIRNA constructs. (E) Enrichment or depletion of the indicated miRNA and tasiRNA families in the Arabidopsis HA-AGO2 IP fraction relative to the input fraction. Underrepresentation ranged from −1.1- to −255-fold, but the display was limited at −6.0. Families for which no reads were obtained from one fraction, but for which at least 14 reads were obtained in the other fraction, are marked with an asterisk. Cell 2008 133, 128-141DOI: (10.1016/j.cell.2008.02.033) Copyright © 2008 Elsevier Inc. Terms and Conditions

Figure 5 Specificity Determinants for AGO1, AGO2, and AGO7 (A) Predicted foldbacks of MIR171a and MIR390a mutant and chimeric constructs. (B) Protein and RNA blot assays using input (in) and IP (HA) fractions from N. benthamiana following coexpression of empty vector, 35S:HA-AGO1, 35S:HA-AGO7, or 35S:HA-AGO2 and 35S-promoter-driven parental or mutant MIR171a and MIR390a constructs. (C) RNA blot assays for miR390 and syn-tasiRNA from N. benthamiana assays. Mean relative levels ± SE of syn-tasiRNA are shown with blot images for one replicate (35S:MIR390a + 35S:TAS3aPDS-2 + 35S:HA-AGO7 = 1.0). (D and E) Protein and RNA blot assays using input (in) and IP (HA) fractions of leaf tissue extracts from N. benthamiana following coexpression of empty vector, 35S:HA-AGO1, or 35S:HA-AGO7 and 35S-promoter-driven MIR171a, MIR390a, or MIR171a/MIR390a chimeric constructs. Cell 2008 133, 128-141DOI: (10.1016/j.cell.2008.02.033) Copyright © 2008 Elsevier Inc. Terms and Conditions

Figure 6 miR390-AGO Specificity and Three Models for Recruitment of RDR6 to TAS3 Transcripts (A) 5′ nucleotide specificity rules apply to AGO1 and AGO2, but not AGO7. Three models (1–3) to explain how the 5′ miR390-AGO7 complex recruits RDR6 to TAS3 transcripts are shown in the shaded boxes. (B) Summary of AGO specificity for miRNA derived from each of the MIR171a and MIR390a 5′ nt substitution and chimeric constructs (Figure 5A). Cell 2008 133, 128-141DOI: (10.1016/j.cell.2008.02.033) Copyright © 2008 Elsevier Inc. Terms and Conditions