Volume 108, Issue 9, Pages (May 2015)

Slides:



Advertisements
Similar presentations
Voltage-Dependent Hydration and Conduction Properties of the Hydrophobic Pore of the Mechanosensitive Channel of Small Conductance  Steven A. Spronk,
Advertisements

Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC
Volume 98, Issue 3, Pages (February 2010)
Membrane-Induced Structural Rearrangement and Identification of a Novel Membrane Anchor in Talin F2F3  Mark J. Arcario, Emad Tajkhorshid  Biophysical.
Effect of Trehalose on a Phospholipid Membrane under Mechanical Stress
Volume 96, Issue 10, Pages (May 2009)
Pedro R. Magalhães, Miguel Machuqueiro, António M. Baptista 
Vishwanath Jogini, Benoît Roux  Biophysical Journal 
Structure and Protein Design of a Human Platelet Function Inhibitor
Olivier Fisette, Stéphane Gagné, Patrick Lagüe  Biophysical Journal 
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
A Coiled-Coil Peptide Shaping Lipid Bilayers upon Fusion
Armando J. de Jesus, Ormacinda R. White, Aaron D. Flynn, Hang Yin 
Interactions of Pleckstrin Homology Domains with Membranes: Adding Back the Bilayer via High-Throughput Molecular Dynamics  Eiji Yamamoto, Antreas C.
Reversible Liposome Association Induced by LAH4: A Peptide with Potent Antimicrobial and Nucleic Acid Transfection Activities  Arnaud Marquette, Bernard.
Yvonne Groemping, Karine Lapouge, Stephen J. Smerdon, Katrin Rittinger 
Volume 90, Issue 4, Pages (February 2006)
Volume 103, Issue 12, Pages (December 2012)
Volume 3, Issue 5, Pages (May 2013)
Volume 112, Issue 2, Pages (January 2017)
Volume 102, Issue 3, Pages (February 2012)
Coupling of Retinal, Protein, and Water Dynamics in Squid Rhodopsin
Influence of Protein Scaffold on Side-Chain Transfer Free Energies
Tianjun Sun, Peter L. Davies, Virginia K. Walker  Biophysical Journal 
Elif Eren, Megan Murphy, Jon Goguen, Bert van den Berg  Structure 
Fiber-Dependent and -Independent Toxicity of Islet Amyloid Polypeptide
Volume 24, Issue 6, Pages (June 2016)
Volume 18, Issue 10, Pages (October 2010)
Volume 107, Issue 10, Pages (November 2014)
Yuno Lee, Philip A. Pincus, Changbong Hyeon  Biophysical Journal 
Janin Glaenzer, Martin F. Peter, Gavin H. Thomas, Gregor Hagelueken 
Calcium Enhances Binding of Aβ Monomer to DMPC Lipid Bilayer
Volume 102, Issue 9, Pages (May 2012)
Volume 92, Issue 1, Pages L07-L09 (January 2007)
Volume 95, Issue 9, Pages (November 2008)
Volume 108, Issue 6, Pages (March 2015)
Sunhwan Jo, Joseph B. Lim, Jeffery B. Klauda, Wonpil Im 
Pek Ieong, Rommie E. Amaro, Wilfred W. Li  Biophysical Journal 
Volume 107, Issue 5, Pages (September 2014)
Molecular Interactions of Alzheimer's Biomarker FDDNP with Aβ Peptide
Activation of the Edema Factor of Bacillus anthracis by Calmodulin: Evidence of an Interplay between the EF-Calmodulin Interaction and Calcium Binding 
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Chetan Poojari, Dequan Xiao, Victor S. Batista, Birgit Strodel 
Volume 112, Issue 2, Pages (January 2017)
Thomas H. Schmidt, Yahya Homsi, Thorsten Lang  Biophysical Journal 
Volume 111, Issue 1, Pages (July 2016)
Biophysical Characterization of Styryl Dye-Membrane Interactions
Min Wang, Mary Prorok, Francis J. Castellino  Biophysical Journal 
The Role of Cholesterol in Driving IAPP-Membrane Interactions
Volume 114, Issue 1, Pages (January 2018)
Tyrone J. Yacoub, Allam S. Reddy, Igal Szleifer  Biophysical Journal 
Ion-Induced Defect Permeation of Lipid Membranes
Molecular Dynamics Study of Bipolar Tetraether Lipid Membranes
Molecular Dynamics Simulations of Hydrophilic Pores in Lipid Bilayers
OmpT: Molecular Dynamics Simulations of an Outer Membrane Enzyme
Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC
Membrane Insertion of a Voltage Sensor Helix
Volume 105, Issue 11, Pages (December 2013)
Tianjun Sun, Peter L. Davies, Virginia K. Walker  Biophysical Journal 
Shayantani Mukherjee, Sean M. Law, Michael Feig  Biophysical Journal 
Interactions of the Auxilin-1 PTEN-like Domain with Model Membranes Result in Nanoclustering of Phosphatidyl Inositol Phosphates  Antreas C. Kalli, Gareth.
Structures of monomeric and oligomeric forms of the Toxoplasma gondii perforin-like protein 1 by Tao Ni, Sophie I. Williams, Saša Rezelj, Gregor Anderluh,
Volume 97, Issue 7, Pages (October 2009)
Volume 108, Issue 4, Pages (February 2015)
Volume 109, Issue 10, Pages (November 2015)
Volume 96, Issue 3, Pages (February 2009)
Volume 109, Issue 12, Pages (December 2015)
Volume 98, Issue 4, Pages (February 2010)
Distribution of Halothane in a Dipalmitoylphosphatidylcholine Bilayer from Molecular Dynamics Calculations  Laure Koubi, Mounir Tarek, Michael L. Klein,
Volume 98, Issue 3, Pages (February 2010)
Presentation transcript:

Volume 108, Issue 9, Pages 2223-2234 (May 2015) Characterization of PROPPIN-Phosphoinositide Binding and Role of Loop 6CD in PROPPIN-Membrane Binding  Ricarda A. Busse, Andreea Scacioc, Roswitha Krick, Ángel Pérez-Lara, Michael Thumm, Karin Kühnel  Biophysical Journal  Volume 108, Issue 9, Pages 2223-2234 (May 2015) DOI: 10.1016/j.bpj.2015.03.045 Copyright © 2015 Biophysical Society Terms and Conditions

Figure 1 Analysis of PIP binding of PROPPINs. (A) ITC measurements of PROPPINs were done with PtdIns3P- and PtdIns(3,5)P2-containing SUVs. Liposomes were composed of PC/PE/Texas-Red-PE/PIP (72:24:2:2, weight ratio). (B) Liposome flotation assays show the PIP binding specificities of PaAtg18 and KlAtg21. SUVs consisted of PC/PE/Texas-Red-PE/PIP (74:23:2:1, weight ratio) and the protein concentration was 2 μM. Biophysical Journal 2015 108, 2223-2234DOI: (10.1016/j.bpj.2015.03.045) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 2 Kinetics of KlHsv2 binding to phospholipid vesicles. (A–E) Averaged time courses of dansyl emission at different vesicle concentrations. LUVs containing (A) DOPC/DOPE/PtdIns3P/dansyl-DHPE (73:20:2:5, molar ratio), (B) DOPC/DOPE/PtdIns(3,5)P2/dansyl-DHPE (73:20:2:5, molar ratio), or (C) DOPC/DOPE/DOPS/dansyl-DHPE (35:20:40:5, molar ratio), or SUVs containing (D) DOPC/DOPE/PtdIns3P/dansyl-DHPE (73:20:2:5, molar ratio) or (E) DOPC/DOPE/PtdIns(3,5)P2/dansyl-DHPE (73:20:2:5, molar ratio) were rapidly mixed with an equal volume of solution containing KlHsv2 (2 μM). Solid lines show monoexponential fits. (F) Double x-scale graph showing the dependency of kobs on vesicle concentration in the presence of LUVs containing DOPC/DOPE/PtdIns3P/dansyl-DHPE (blue squares), DOPC/DOPE/PtdIns(3,5)P2/dansyl-DHPE (orange squares), or DOPC/DOPE/DOPS/dansyl-DHPE (red circles), and SUVs composed of DOPC/DOPE/PtdIns3P/dansyl-DHPE (blue triangles) or DOPC/DOPE/PtdIns(3,5)P2/dansyl-DHPE (orange triangles). Error bars indicate the SE (n = 3–4). To see this figure in color, go online. Biophysical Journal 2015 108, 2223-2234DOI: (10.1016/j.bpj.2015.03.045) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 3 KlHsv2Δloop6CD−GS structure and mutagenesis studies of loop 6CD. (A) Superimposition of KlHsv2Δloop6CD−GS (orange, 4V16) and wild-type KlHsv2 (light blue, 4AV8) crystal structures. Blades 1–7 are marked. Each blade consists of four antiparallel β-strands, denoted as A–D beginning from the core. (B) Close-up of the two PIP-binding sites of KlHsv2Δloop6CD-GS, showing the 2.8 Å resolution 2mFo-DFc electron density map contoured at 1.0 σ (blue). The PIP-binding sites are on the rim of blades 4–6. The site 1 ScHsv2R264A and site 2 ScHsv2H294A mutants used for ITC measurements correspond to KlHsv2 residues R219 and H249, which are marked by asterisks. (C) Liposome flotation assays with KlHsv2 loop 6CD mutants. SUVs consisted of PC/PE/Texas-Red-PE/PIP (74:23:2:1, weight ratio) and proteins were used at a concentration of 1.5 μM. (D) Fluorescence microscopy analysis of GFP-tagged KlHsv2 mutants. To see this figure in color, go online. Biophysical Journal 2015 108, 2223-2234DOI: (10.1016/j.bpj.2015.03.045) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 4 CG and atomistic MD simulations. (A) Time course of a 100 ns CG-MD simulation of DPPC bilayer formation around KlHsv2. DPPC choline groups are represented in blue, phosphates are red, and glycerol groups are yellow. For simplicity, water molecules and hydrophobic chains of the lipids are not shown. (B) Time course of a 1 μs CG-MD simulation of KlHsv2 in a DPPC membrane. (C) A 100 ns atomistic MD simulation of KlHsv2 in a DPPC membrane. The oxygen atoms of the DPPC are represented in red, nitrogens are dark blue, phosphorous is brown, carbons are light blue, FRRG arginine R219 is yellow, and R220 is blue. To see this figure in color, go online. Biophysical Journal 2015 108, 2223-2234DOI: (10.1016/j.bpj.2015.03.045) Copyright © 2015 Biophysical Society Terms and Conditions