Mathieu Denis, James E.M. Lewis, Florian Modicom, Stephen M. Goldup

Slides:



Advertisements
Similar presentations
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Advertisements

I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Lecture 2a. Optical Purity Assessment Conversion to enantiomers into diastereomers followed by quantitation using 1 H-NMR spectroscopy ($$) Chiral solvent.
Chiral Derivatising Agents (CDAs)
Interaction of LL-37 with Model Membrane Systems of Different Complexity: Influence of the Lipid Matrix  E. Sevcsik, G. Pabst, W. Richter, S. Danner,
Volume 112, Issue 7, Pages (April 2017)
Volume 1, Issue 5, Pages (November 2016)
A Singlet Phosphinidene Stable at Room Temperature
Volume 12, Issue 1, Pages (January 2005)
Chromatography on Chiral Stationary Phases
Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition
Mahmoud Ghanem, Andrew S. Murkin, Vern L. Schramm  Chemistry & Biology 
Synthesis and Solution Processing of a Hydrogen-Bonded Ladder Polymer
Volume 3, Issue 2, Pages (August 2017)
Volume 3, Issue 1, Pages (July 2017)
Efficient Energy-Conversion Materials for the Future: Understanding and Tailoring Charge-Transfer Processes in Carbon Nanostructures  Volker Strauss,
Volume 2, Issue 5, Pages (May 2017)
Marcel Zimmermann, Julian D. Hegemann, Xiulan Xie, Mohamed A. Marahiel 
Simple and Clean Photo-induced Methylation of Heteroarenes with MeOH
Kenneth Virgel N. Esguerra, Wenbo Xu, Jean-Philip Lumb  Chem 
New Chiral Solid Catalysts for Oxidation Reactions
A Sensor for Trace H2O Detection in D2O
Nobuaki Matsumori, Toshiyuki Yamaguchi, Yoshiko Maeta, Michio Murata 
Lotta Turunen, Ulrike Warzok, Christoph A. Schalley, Kari Rissanen 
Chromatography on Chiral Stationary Phases
Volume 19, Issue 1, Pages (January 2011)
False-color Raman images of CD4+T cells and CD8+ T cells from control and LPS-treated animals after day 1, 4, 10, and 30 obtained by k-means cluster analysis.
Volume 1, Issue 3, Pages (September 2016)
Volume 3, Issue 2, Pages (August 2017)
Volume 1, Issue 1, Pages (July 2016)
Volume 3, Issue 5, Pages (November 2017)
Volume 8, Pages (October 2018)
Aliza Khurram, Mingfu He, Betar M. Gallant  Joule 
Volume 88, Issue 1, Pages (January 2005)
Volume 1, Issue 5, Pages (November 2016)
Volume 3, Issue 6, Pages (December 2017)
Twisted Cycloalkynes and Remote Activation of “Click” Reactivity
Volume 3, Issue 2, Pages (August 2017)
Volume 1, Issue 6, Pages (December 2016)
Catalyzing Excellence: In a Competitive High-Stakes Research Arena, Can We Be Our Own Catalysts for Success?  Alyssa-Jennifer Avestro  Chem  Volume 1,
Volume 4, Issue 3, Pages (March 2018)
Volume 3, Issue 2, Pages (February 2019)
Structural Basis for Vertebrate Filamin Dimerization
What Limits the Performance of Ta3N5 for Solar Water Splitting?
Volume 12, Issue 1, Pages (January 2005)
Anna M. Popova, Peter Z. Qin  Biophysical Journal 
Volume 16, Issue 8, Pages (August 2008)
Volume 19, Issue 1, Pages (January 2011)
Volume 4, Issue 4, Pages (April 2018)
Transforming CO2 by Stabilizing the Labile Product
Rapid Dehydroxytrifluoromethoxylation of Alcohols
A Self-Sequestered Calmodulin-like Ca2+ Sensor of Mitochondrial SCaMC Carrier and Its Implication to Ca2+-Dependent ATP-Mg/Pi Transport  Qin Yang, Sven.
Twisted Cycloalkynes and Remote Activation of “Click” Reactivity
Volume 15, Issue 8, Pages (August 2008)
A Radical Mechanism for Frustrated Lewis Pair Reactivity
A Crystalline DNA Device
Solution Structure of a TBP–TAFII230 Complex
Volume 3, Issue 6, Pages (December 2017)
Mahmoud Ghanem, Andrew S. Murkin, Vern L. Schramm  Chemistry & Biology 
A New Horizon for Fischer-Tropsch Synthesis
Volume 27, Issue 7, Pages e5 (July 2019)
Volume 25, Issue 9, Pages e3 (September 2017)
Volume 4, Issue 3, Pages (March 2018)
Volume 2, Issue 6, Pages (June 2017)
Catalytic Double Cyclization Process for Antitumor Agents against Breast Cancer Cell Lines  Raffaella Mancuso, Ida Ziccarelli, Adele Chimento, Nadia Marino,
Facile Synthesis of Multi-shelled ZnS-CdS Cages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion  Peng Zhang, Bu Yuan Guan,
Reaction: Synthesis in Drug Discovery, the Short and Long of It
Volume 21, Issue 10, Pages (October 2013)
Room-Temperature Conversion of Methane Becomes True
Volume 3, Issue 5, Pages (November 2017)
Presentation transcript:

Mathieu Denis, James E.M. Lewis, Florian Modicom, Stephen M. Goldup An Auxiliary Approach for the Stereoselective Synthesis of Topologically Chiral Catenanes  Mathieu Denis, James E.M. Lewis, Florian Modicom, Stephen M. Goldup  Chem  DOI: 10.1016/j.chempr.2019.03.008 Copyright © 2019 The Author(s) Terms and Conditions

Chem DOI: (10.1016/j.chempr.2019.03.008) Copyright © 2019 The Author(s) Terms and Conditions

Figure 1 Schematic of Our Proposed Approach to Topologically Chiral Catenanes Chem DOI: (10.1016/j.chempr.2019.03.008) Copyright © 2019 The Author(s) Terms and Conditions

Figure 2 Characterization of Catenanes 3b (A) Solid-state structure of major diastereomer (R,Smt)-3b35 with selected intercomponent interactions highlighted (selected distances [Å]: Hu···N = 2.35, OH···N = 2.28). (B) CD spectra of (35 μM in CHCl3) (R,Smt)-3b and (R,Rmt)-3b. (C) Partial stacked 1H NMR spectra (500 MHz, 298 K, CDCl3) of (i) the corresponding non-interlocked triazole macrocycle derived from (S)-1, (ii) catenane (R,Rmt)-3b, (iii) catenane (R,Smt)-3b, and (iv) macrocycle 2b. Selected signals are assigned and color coded (see Scheme 1). Signals corresponding to macrocycle 2b are all shown in blue for clarity. Chem DOI: (10.1016/j.chempr.2019.03.008) Copyright © 2019 The Author(s) Terms and Conditions

Figure 3 Characterization of Catenanes 6b (A) Analytical chiral stationary phase HPLC chromatograms (RegisCell, 98:2 hexane-iPrOH, 0.5 mL/min) of (Rmt)-6b (blue), (Smt)-6b (green), and racemic 6b (orange). (B) CD spectra (35.0 μM in CHCl3, 293 K) of (Rmt)-6b (blue), (Smt)-6b (green), and racemic 6b (orange). (C) Partial stacked 1H NMR spectra (500 MHz, 298 K, CDCl3) of (i) the corresponding non-interlocked triazole macrocycle of catenane 6b, (ii) catenane (Smt)-6b, and (iii) macrocycle 2b. Selected signals are assigned and color coded (see Schemes 1 and 2). Signals corresponding to macrocycle 2b are all shown in blue for clarity. Chem DOI: (10.1016/j.chempr.2019.03.008) Copyright © 2019 The Author(s) Terms and Conditions

Scheme 1 Synthesis of Diastereomeric Catenanes 3 Reagents and conditions: (i) slow addition (4 h) of (R)-1 to macrocycle 2, [Cu(MeCN)4]PF6, NiPr2Et, CHCl3-EtOH (1:1) at 60°C; (ii) KCN and CH2Cl2-MeOH (1:1). (R,R/Smt)-3a: n = 2, 1:1 inseparable mixture, 72% combined isolated yield; (R,R/Smt)-3b: n = 1, 2:1 separable mixture favoring (R,Smt)-3b, 89% combined isolated yield; (R,R/Smt)-3c: n = 0, 1:1 inseparable mixture: ∼23% conversion of 2c by 1H NMR analysis of the unpurified reaction mixture. Chem DOI: (10.1016/j.chempr.2019.03.008) Copyright © 2019 The Author(s) Terms and Conditions

Scheme 2 Cleavage of the Chiral Auxiliary from Catenane (R,Smt)-3b to Give Catenane (Smt)-6b Reagents and conditions: (i) (COCl)2, DMSO, NEt3, and CH2Cl2 at room temperature (RT); (ii) AcOH and CHCl3 at RT. 6b was isolated in 68% yield over two steps. Chem DOI: (10.1016/j.chempr.2019.03.008) Copyright © 2019 The Author(s) Terms and Conditions