The Born-Oppenheimer Separation

Slides:



Advertisements
Similar presentations
Electric Field y x z Point charge: Uniformly charged sphere: Dipole:
Advertisements

1 X 2  : NO C 2  : z z  = 3/2  = 1/2 Spin-orbit interaction Orbit-rot. interaction z  = 3/2  = 1/2 Spin-orbit interaction Orbit-rot. interaction.
Quantum Chemistry Revisited Powerpoint Templates.
21-1 Physics I Class 21 Thinking About Electric Fields and Electric Potential.
B. Lee Roberts, Welcome and Overview – Lepton Moments June p. 1/19 Welcome to Lepton Moments 2006! B. Lee Roberts Department of Physics.
Circuits Resistors, Capacitors and Inductors 1 Resistors Capacitors Inductors.
Nuclear de-excitation Outline of approach… Source of radiation Propagation of radiation field Detection of radiation ?? nucleus.
Introduction to Infrared Spectrometry Chap 16. Infrared Spectral Regions Table 16-1 Most used – 15.
B Fe H Fe B gap H gap B air H air i coil windings gap region iron core.
Day18: Electric Dipole Potential & Determining E-Field from V
The Electric Dipole -q +q d An electric dipole consists of two equal and opposite charges (q and -q ) separated a distance d.
The Electric Dipole -q +q d An electric dipole consists of two equal and opposite charges (q and -q ) separated a distance d.
 Somnath Bharadwaj and Pratik Khastgir, Department of Physics and Meteorology, IIT Kharagpur, India Electromagnetic.
Math 3120 Differential Equations with Boundary Value Problems Chapter 4: Higher-Order Differential Equations Section 4-9: Solving Systems of Linear Differential.
Ch ; Lecture 26 – Quantum description of absorption.
4-Level Laser Scheme. He-Ne Laser Tunable Dye Lasers.
H = ½ ω (p 2 + q 2 ) The Harmonic Oscillator QM.
Pre-Calculus Section 1.7 Inequalities Objectives: To solve linear inequalities. To solve absolute value inequalities.
Interval Notation.
C We have to solve the time independent problem H o  o = E o  o Harry Kroto 2004.
Methods of excitation: nuclear reactions
PARALLEL PLATES. From previous work, the electric field strength can be found from the electric force on a test charge.
Bill Madden  = (4  /3ħc)  n  e  m  2  (N m -N n )  (  o -  ) Square of the transition moment  n  e  m  2 2.Frequency.
365 x 24 x 60 x 60 Harry Kroto x 24 x 60 x 60 = 0.36 x 2.4 x 0.36 x 10 2 x 10 x 10 4 Harry Kroto 2004.
Lifetimes (in yrs) Photo dissociation t PD = 10 3 AB + h  A + B 2-body collisions t 2B = 10 3 /n A + B  AB*  A + B Radiative association t RA = 10 9.
 Somnath Bharadwaj and Pratik Khastgir, Department of Physics and Meteorology, IIT Kharagpur, India Electromagnetic.
Light’s Particle-like Properties Energy is quantized into discrete bundles of energy Absorption spectra wavelengths are related to specific energy jumps.
Lecture 21: FRI 06 MAR Magnetic fields Ch Physics 2102 Jonathan Dowling 28.8 Force on Current in Wire 28.9 Torque on Current Loop Magnetic.
Time independent H o  o = E o  o Time dependent [H o + V(t)]  = iħ  /  t Harry Kroto 2004 Time dependent Schrödinger [H o + V(t)]  = iħ  / 
Harry Kroto The masers usually switch of after ca 3 days.
Chapter 8. Molecular Motion and Spectroscopy
§9-3 Matrix Operations. Matrix Notation The matrix has 2 rows and 3 columns.
1D Kinematics Equations and Problems. Velocity The rate at an object changes position relative to something stationary. X VT ÷ x ÷
Algebra II H Problem of the Day Homework p eoo Sketch the graphs of the following functions. Use a separate graph for each function. Hint: To.
QM2 Concept Test 14.3 Choose all of the following statements that are correct when incoherent thermal radiation acts as a perturbation on the hydrogen.
Energy of a magnetic dipole in a magnetic field
Fermi’s Golden Rule Io I l Harry Kroto 2004.
OBJECTIVE I will solve absolute-value equations using inverse operations.
UNIT IV Molecules.
He  He+  O+  OH+  OH2+  OH3+  OH2 +e + He + H + H + H + H
Homework Lesson 3.4 Read: Pages Handout #1-89 (EOO)
The Born-Oppenheimer Separation
Only three lines observed R(0) R(1) P(1)
Lesson 18 Example 1.
“Forbidden Transitions”
Solve: 1. 4<
Rotational and Vibrational Spectra
Quantal rotation Molecules
PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103 Plan for Lecture 9:
Time independent Hoo = Eoo Stationary States mo  m
p p → Fusion Reactions in Stars Hydrogen “Burning “ at 107 K
Rigid Diatomic molecule
This is the far infra red spectrum of the diatomic molecule CO
I = μr2 μ = m1m2/(m1+m2) I (uÅ2) = / B(cm-1)
Find the best Escorts Service in KolkataEscorts Service in Kolkata
PHY 712 Electrodynamics 9-9:50 AM MWF Olin 105 Plan for Lecture 9:
Quantum Chemistry / Quantum Mechanics
Section 9.4 – Solving Differential Equations Symbolically
Functions and Relations
CO Laboratory rotational infrared spectrum
Identifying Alpha/Beta/Gamma Magnetic fields
Molecular Spectra By – P.V.Koshti.
at: ircamera.as.arizona.edu/.../magneticearth.htm
How do nuclei rotate? 1. The molecular picture.
Far infrared rotational spectrum of CO J= B
The second serendipitous radio discovery
Quantal rotation Molecules
 l .  l   l   l   l  Io.
Lesson 3.3 Writing functions.
Presentation transcript:

The Born-Oppenheimer Separation Harry Kroto 2004

The Born-Oppenheimer Separation H = Hel + Hvib + Hrot+ … Harry Kroto 2004

The Born-Oppenheimer Separation H = Hel + Hvib + Hrot+ …  = el vib rot …  = i i Harry Kroto 2004

The Born-Oppenheimer Separation H = Hel + Hvib + Hrot+ …  = el vib rot …  = i i E = Eel + Evib + Erot +… E= i Ei Harry Kroto 2004

The Born-Oppenheimer Separation H = E H = Hel + Hvib + Hrot+ …  = el vib rot …  = i i E = Eel + Evib + Erot +… E= i Ei We shall often use Dirac notation m  m and m*  n  Harry Kroto 2004

Time independent Hoo = Eoo Harry Kroto 2004

Time independent Hoo = Eoo Stationary States mo  m Harry Kroto 2004

Time independent Hoo = Eoo Stationary States mo  m m  o Harry Kroto 2004

Need to solve the Time Dependent Problem D Selection Rules Need to solve the Time Dependent Problem Harry Kroto 2004

Time dependent Time independent [Ho + V(t)] = iħ/t Hoo = Eoo Stationary States mo  m m  o Harry Kroto 2004 Harry Kroto 2004

Time dependent Time independent [Ho + V(t)] = iħ/t Hoo = Eoo V(t) = -Ee(t) e Time independent Hoo = Eoo Stationary States mo  m m  o Harry Kroto 2004 Harry Kroto 2004

Time dependent Time independent [Ho + V(t)] = iħ/t Hoo = Eoo V(t) = -Ee(t) e Ee (t) = Eeocos 2t Time independent Hoo = Eoo Stationary States mo  m m  o Harry Kroto 2004 Harry Kroto 2004

Time dependent Time independent [Ho + V(t)] = iħ/t Hoo = Eoo V(t) = -Ee(t) e Ee (t) = Eeocos 2t Ee(t) Radiation field Time independent Hoo = Eoo Stationary States mo  m m  o Harry Kroto 2004 Harry Kroto 2004

e Electric dipole moment Time independent Hoo = Eoo Time dependent [Ho + V(t)] = iħ/t V(t) = -Ee(t) e Ee (t) = Eeocos 2t Ee(t) Radiation field e Electric dipole moment Time independent Hoo = Eoo Stationary States mo  m m  o Harry Kroto 2004 Harry Kroto 2004

e Electric dipole moment  = mam(t) m Time independent Hoo = Eoo Time dependent [Ho + V(t)] = iħ/t V(t) = -Ee(t) e Ee (t) = Eeocos 2t Ee(t) Radiation field e Electric dipole moment  = mam(t) m Time independent Hoo = Eoo Stationary States mo  m m  o Harry Kroto 2004 Harry Kroto 2004