Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.

Slides:



Advertisements
Similar presentations
2 – In previous chapters: – We could design an optimal classifier if we knew the prior probabilities P(wi) and the class- conditional probabilities P(x|wi)
Advertisements

0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Chapter 2: Bayesian Decision Theory (Part 2) Minimum-Error-Rate Classification Classifiers, Discriminant Functions and Decision Surfaces The Normal Density.
Pattern Classification, Chapter 2 (Part 2) 0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R.
Pattern Classification. Chapter 2 (Part 1): Bayesian Decision Theory (Sections ) Introduction Bayesian Decision Theory–Continuous Features.
Pattern Classification, Chapter 2 (Part 2) 0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R.
Chapter 2: Bayesian Decision Theory (Part 2) Minimum-Error-Rate Classification Classifiers, Discriminant Functions and Decision Surfaces The Normal Density.
Pattern Classification Chapter 2 (Part 2)0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Chapter 2: Bayesian Decision Theory (Part 1) Introduction Bayesian Decision Theory–Continuous Features All materials used in this course were taken from.
Pattern Classification, Chapter 3 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Clustering.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Chapter 2 (part 3) Bayesian Decision Theory Discriminant Functions for the Normal Density Bayes Decision Theory – Discrete Features All materials used.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Bayesian Estimation (BE) Bayesian Parameter Estimation: Gaussian Case
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Chapter 3 (part 1): Maximum-Likelihood & Bayesian Parameter Estimation  Introduction  Maximum-Likelihood Estimation  Example of a Specific Case  The.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
METU Informatics Institute Min 720 Pattern Classification with Bio-Medical Applications PART 2: Statistical Pattern Classification: Optimal Classification.
0 Pattern Classification, Chapter 3 0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda,
Principles of Pattern Recognition
Speech Recognition Pattern Classification. 22 September 2015Veton Këpuska2 Pattern Classification  Introduction  Parametric classifiers  Semi-parametric.
ECE 8443 – Pattern Recognition LECTURE 03: GAUSSIAN CLASSIFIERS Objectives: Normal Distributions Whitening Transformations Linear Discriminants Resources.
ECE 8443 – Pattern Recognition ECE 8527 – Introduction to Machine Learning and Pattern Recognition LECTURE 02: BAYESIAN DECISION THEORY Objectives: Bayes.
1 E. Fatemizadeh Statistical Pattern Recognition.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Chapter 3: Maximum-Likelihood Parameter Estimation l Introduction l Maximum-Likelihood Estimation l Multivariate Case: unknown , known  l Univariate.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Bayesian Decision Theory Basic Concepts Discriminant Functions The Normal Density ROC Curves.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides* were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification Chapter 2(Part 3) 0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Lecture 2. Bayesian Decision Theory
Probability theory retro
LECTURE 03: DECISION SURFACES
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Computational Intelligence: Methods and Applications
Pattern Classification, Chapter 3
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Recognition and Machine Learning
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
LECTURE 11: Exam No. 1 Review
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Presentation transcript:

Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors and the publisher Pattern Classification, Chapter 2 (Part 2)

Chapter 2 (Part 2): Bayesian Decision Theory (Sections 2.3-2.5) Minimum-Error-Rate Classification Classifiers, Discriminant Functions and Decision Surfaces The Normal Density

Minimum-Error-Rate Classification Actions are decisions on classes If action i is taken and the true state of nature is j then: the decision is correct if i = j and in error if i  j Seek a decision rule that minimizes the probability of error which is the error rate Pattern Classification, Chapter 2 (Part 2)

Introduction of the zero-one loss function: Therefore, the conditional risk is: “The risk corresponding to this loss function is the average probability error”  Pattern Classification, Chapter 2 (Part 2)

Minimize the risk requires maximize P(i | x) (since R(i | x) = 1 – P(i | x)) For Minimum error rate Decide i if P (i | x) > P(j | x) j  i Pattern Classification, Chapter 2 (Part 2)

Regions of decision and zero-one loss function, therefore: If  is the zero-one loss function wich means: Pattern Classification, Chapter 2 (Part 2)

Pattern Classification, Chapter 2 (Part 2)

Classifiers, Discriminant Functions and Decision Surfaces The multi-category case Set of discriminant functions gi(x), i = 1,…, c The classifier assigns a feature vector x to class i if: gi(x) > gj(x) j  i Pattern Classification, Chapter 2 (Part 2)

Pattern Classification, Chapter 2 (Part 2)

(max. discriminant corresponds to min. risk!) Let gi(x) = - R(i | x) (max. discriminant corresponds to min. risk!) For the minimum error rate, we take gi(x) = P(i | x) (max. discrimination corresponds to max. posterior!) gi(x)  P(x | i) P(i) gi(x) = ln P(x | i) + ln P(i) (ln: natural logarithm!) Pattern Classification, Chapter 2 (Part 2)

Feature space divided into c decision regions if gi(x) > gj(x) j  i then x is in Ri (Ri means assign x to i) The two-category case A classifier is a “dichotomizer” that has two discriminant functions g1 and g2 Let g(x)  g1(x) – g2(x) Decide 1 if g(x) > 0 ; Otherwise decide 2 Pattern Classification, Chapter 2 (Part 2)

The computation of g(x) Pattern Classification, Chapter 2 (Part 2)

Pattern Classification, Chapter 2 (Part 2)

The Normal Density Univariate density Where: Density which is analytically tractable Continuous density A lot of processes are asymptotically Gaussian Handwritten characters, speech sounds are ideal or prototype corrupted by random process (central limit theorem) Where:  = mean (or expected value) of x 2 = expected squared deviation or variance Pattern Classification, Chapter 2 (Part 2)

Pattern Classification, Chapter 2 (Part 2)

Multivariate density where: Multivariate normal density in d dimensions is: where: x = (x1, x2, …, xd)t (t stands for the transpose vector form)  = (1, 2, …, d)t mean vector  = d*d covariance matrix || and -1 are determinant and inverse respectively Pattern Classification, Chapter 2 (Part 2)