Identification of molecular markers for articular cartilage

Slides:



Advertisements
Similar presentations
M. M. J. Caron, P. J. Emans, M. M. E. Coolsen, L. Voss, D. A. M
Advertisements

Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation  P. Bernstein, C. Sticht,
Time-lapse observation of the dedifferentiation process in mouse chondrocytes using chondrocyte-specific reporters  Y. Minegishi, K. Hosokawa, N. Tsumaki 
H. J. Pulkkinen, V. Tiitu, P. Valonen, J. S. Jurvelin, M. J. Lammi, I
Muscle cell-derived factors inhibit inflammatory stimuli-induced damage in hMSC- derived chondrocytes  R.S. Rainbow, H. Kwon, A.T. Foote, R.C. Preda, D.L.
Moderate dynamic compression inhibits pro-catabolic response of cartilage to mechanical injury, tumor necrosis factor-α and interleukin-6, but accentuates.
Effective reduction of the interleukin-1β transcript in osteoarthritis-prone guinea pig chondrocytes via short hairpin RNA mediated RNA interference influences.
MicroRNA-92a-3p regulates the expression of cartilage-specific genes by directly targeting histone deacetylase 2 in chondrogenesis and degradation  G.
Implantation of bone marrow-derived buffy coat can supplement bone marrow stimulation for articular cartilage repair  L.H. Jin, B.H. Choi, Y.J. Kim, S.R.
MicroRNA-92a-3p regulates the expression of cartilage-specific genes by directly targeting histone deacetylase 2 in chondrogenesis and degradation  G.
M. M. J. Caron, P. J. Emans, M. M. E. Coolsen, L. Voss, D. A. M
Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering.
CXC chemokine ligand 12a enhances chondrocyte proliferation and maturation during endochondral bone formation  G.-W. Kim, M.-S. Han, H.-R. Park, E.-J.
Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis  T. Weng, Y. Xie, L. Yi, J. Huang,
Deiodinase 2 upregulation demonstrated in osteoarthritis patients cartilage causes cartilage destruction in tissue-specific transgenic rats  H. Nagase,
M. Siebelt, A. E. van der Windt, H. C. Groen, M. Sandker, J. H
Characterization of cells from pannus-like tissue over articular cartilage of advanced osteoarthritis  G.-H Yuan, M.D., Ph.D., M Tanaka, V.M.D., K Masuko-Hongo,
Identification of small molecular compounds and fabrication of its aqueous solution by laser-ablation, expanding primordial cartilage  D. Ikegami, T.
H. Bretschneider, M. Stiehler, A. Hartmann, E. Boger, C. Osswald, J
Definition of a Critical Size Osteochondral Knee Defect and its Negative Effect on the Surrounding Articular Cartilage in the Rat  H. Katagiri, L.F. Mendes,
Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation  D. Correa, R.A. Somoza, P. Lin, S. Greenberg,
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
K.A. Payne, D.M. Didiano, C.R. Chu  Osteoarthritis and Cartilage 
An in vivo cross-linkable hyaluronan gel with inherent anti-inflammatory properties reduces OA cartilage destruction in female mice subjected to cruciate.
G.-I. Im, H.-J. Kim  Osteoarthritis and Cartilage 
Experimental Model for Cartilage Tissue Engineering to Regenerate the Zonal Organization of Articular Cartilage  T.-K Kim, M.D., Ph.D., B Sharma, B.A.Sc.,
Parathyroid hormone [1-34] improves articular cartilage surface architecture and integration and subchondral bone reconstitution in osteochondral defects.
Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms.
J. -S. Kim, M. H. Ali, F. Wydra, X. Li, J. L. Hamilton, H. S. An, G
BMP activation and Wnt-signalling affect biochemistry and functional biomechanical properties of cartilage tissue engineering constructs  A. Krase, R.
Transglutaminase 2 is a marker of chondrocyte hypertrophy and osteoarthritis severity in the Hartley guinea pig model of knee OA  J.L. Huebner, K.A. Johnson,
CaMKII inhibition in human primary and pluripotent stem cell-derived chondrocytes modulates effects of TGFβ and BMP through SMAD signaling  B. Saitta,
The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels  T. Hao, N. Wen, J.-K.
The use of hyperosmotic saline for chondroprotection: implications for orthopaedic surgery and cartilage repair  N.M. Eltawil, S.E.M. Howie, A.H.R.W.
A. H. Huang, B. S. , M. Yeger-McKeever, M. D. , A. Stein, R. L
Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that.
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
M.M.-G. Sun, F. Beier  Osteoarthritis and Cartilage 
Expression of the semicarbazide-sensitive amine oxidase in articular cartilage: its role in terminal differentiation of chondrocytes in rat and human 
C. Candrian, S. Miot, F. Wolf, E. Bonacina, S. Dickinson, D. Wirz, M
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
Adjacent tissues (cartilage, bone) affect the functional integration of engineered calf cartilage in vitro  E. Tognana, Ph.D., F. Chen, M.D., R.F. Padera,
Perturbations in the HDL metabolic pathway predispose to the development of osteoarthritis in mice following long-term exposure to western-type diet 
A. Ludin, J.J. Sela, A. Schroeder, Y. Samuni, D.W. Nitzan, G. Amir 
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading  R.L. Mauck, C.C-B. Wang, E.S.
Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering.
J.E. Jeon, K. Schrobback, D.W. Hutmacher, T.J. Klein 
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins  M. Pei, M.D., Ph.D., J. Luo, M.D.,
M. M. J. Caron, P. J. Emans, M. M. E. Coolsen, L. Voss, D. A. M
Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment  B. Appel, J. Baumer, D.
T. Kurth, M. Sc. , E. Hedbom, Ph. D. , N. Shintani, Ph. D. , M
Autologous chondrocyte implantation (ACI) for aged patients: development of the proper cell expansion conditions for possible therapeutic applications 
Bisphosphonate rescues cartilage from trauma damage by promoting mechanical sensitivity and calcium signaling in chondrocytes  Y. Zhou, M. Park, L. Wang,
Changes of human menisci in osteoarthritic knee joints
Molecular differentiation between osteophytic and articular cartilage – clues for a transient and permanent chondrocyte phenotype  K. Gelse, A.B. Ekici,
Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins  M. Shimaya, T. Muneta, S. Ichinose, K. Tsuji,
Activation of Indian hedgehog promotes chondrocyte hypertrophy and upregulation of MMP-13 in human osteoarthritic cartilage  F. Wei, J. Zhou, X. Wei,
Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression 
Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration  S. Ashraf, B.-H. Cha, J.-S. Kim, J. Ahn, I.
Definition of a Critical Size Osteochondral Knee Defect and its Negative Effect on the Surrounding Articular Cartilage in the Rat  H. Katagiri, L.F. Mendes,
Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro  C. Co, M.K.
K. -C. Wang, E. Kwan, K. Aris, T. T. Egelhoff, A. I. Caplan, J. F
The detached osteochondral fragment as a source of cells for autologous chondrocyte implantation (ACI) in the ankle joint  S. Giannini, M.D., R. Buda,
Demineralized bone alters expression of Wnt network components during chondroinduction of post-natal fibroblasts  Karen E. Yates, Ph.D  Osteoarthritis.
K. -C. Wang, E. Kwan, K. Aris, T. T. Egelhoff, A. I. Caplan, J. F
Effect of expansion medium on ex vivo gene transfer and chondrogenesis in type II collagen–glycosaminoglycan scaffolds in vitro  R.M. Capito, Ph.D., M.
Presentation transcript:

Identification of molecular markers for articular cartilage T.N. Hissnauer, A. Baranowsky, J.M. Pestka, T. Streichert, K. Wiegandt, C. Goepfert, F.T. Beil, J. Albers, J. Schulze, P. Ueblacker, J.P. Petersen, T. Schinke, N.M. Meenen, R. Pörtner, M. Amling  Osteoarthritis and Cartilage  Volume 18, Issue 12, Pages 1630-1638 (December 2010) DOI: 10.1016/j.joca.2010.10.002 Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Strategy for the identification of AC-specific markers. (A) Gross appearance (left) of a bone-cartilage cylinder harvested from the knee joint of a 6 weeks old minipig (the dotted lines indicate AC and GP cartilage), and Safranin-O staining of non-decalcified sections (middle), showing red staining of cartilage. The right panels show the similar morphological appearance of articular and GP chondrocytes after 10 days of tissue culture. (B) Affymetrix signal intensities for COL2A1, ACAN and COMP showing expression in both types of cartilage, in vivo and in vitro. (C) Affymetrix signal intensities for ALPL, COL10A1 and PTH1R showing specific expression in GP chondrocytes. (D) Affymetrix signal intensities for ABI3BP, THBS4 and SIX1 showing specific expression articular chondrocytes. (B–D) For each sample cartilage was harvested from both knee joints of two individual animals and pooled before preparation. Osteoarthritis and Cartilage 2010 18, 1630-1638DOI: (10.1016/j.joca.2010.10.002) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Tissue-specific expression of molecular cartilage markers. RT-PCR expression analysis for the indicated genes in various porcine tissues, including GP and AC. Note that the molecular markers listed in Table III display higher expression in AC compared to GP cartilage. To confirm the results of the Affymetrix Gene Chip hybridization cartilage was harvested from knee joints of two additional animals. Osteoarthritis and Cartilage 2010 18, 1630-1638DOI: (10.1016/j.joca.2010.10.002) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Histological analysis of TE-cartilage. (A) Gross image of TE-cartilage grown without (−) or with (+) a HA-carrier. (B) Toluidine blue (top) and Safranin-0 (bottom) staining of TE-cartilage. (C) Immunohistochemistry with an antibody against type-II-collagen. (D) GAG content and biomechanical stability (Young’s Modulus) of TE-cartilage. Values are presented as means of three independent preparations. Error bars represent 95% confidence interval. No statistical differences were noted between the two types of TE-cartilage. Osteoarthritis and Cartilage 2010 18, 1630-1638DOI: (10.1016/j.joca.2010.10.002) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Molecular analysis of TE-cartilage. (A) RT-PCR expression analysis of the indicated genes in native GP and AC, compared to four TE-cartilage preparations without (−) or with (+) carrier. (B) Quantitative RT-PCR expression analysis for the indicated genes in native GP and AC, compared to TE-cartilage grown with a HA-carrier (TE). Bars represent mean of three independent preparations for native AC and TE-cartilage (TE), and one preparation for native GP cartilage. Error bars show the 95% confidence interval about the mean position. There were no statistical differences detectable between samples isolated from AC and TE-cartilage with carrier. Osteoarthritis and Cartilage 2010 18, 1630-1638DOI: (10.1016/j.joca.2010.10.002) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions