Effect of anterior strut chordal transection on the force distribution on the marginal chordae of the mitral valve  Muralidhar Padala, PhD, Lazarina Gyoneva,

Slides:



Advertisements
Similar presentations
Quantitative Real-Time Three-Dimensional Echocardiography Provides New Insight into the Mechanisms of Mitral Valve Regurgitation Post-Repair of Atrioventricular.
Advertisements

Benjamin B. Peeler, MD, Irving L. Kron, MD 
Can papillary muscle interventions improve mitral valve repair durability for ischemic mitral regurgitation?  Christos G. Mihos, DO, Orlando Santana,
Is individualized mitral valve repair in the future?
2015 The American Association for Thoracic Surgery Consensus Guidelines: Ischemic mitral valve regurgitation  Irving L. Kron, MD, Michael A. Acker, MD,
Papillary muscle–to–anterior annulus stitches: Another technique to prevent systolic anterior motion after mitral valve repair  Samer Kassem, MD, Hicham.
Papillary muscle sandwich plasty for ischemic mitral regurgitation: A new simple technique  Susumu Ishikawa, MD, Keisuke Ueda, MD, Akio Kawasaki, MD,
Energy loss for evaluating heart valve performance
Right ventricular papillary muscle approximation as a novel technique of valve repair for functional tricuspid regurgitation in an ex vivo porcine model 
Surgical approach to repair of ruptured chordae tendineae causing tricuspid regurgitation  Vincent Chan, MD, Dominique Grisoli, MD, Marc Ruel, MD, MPH,
Three-dimensional assessment of papillary muscle displacement in a porcine model of ischemic mitral regurgitation  Henrik Jensen, MD, PhD, Morten O. Jensen,
Is the Anterior Intertrigonal Distance Increased in Patients With Mitral Regurgitation Due to Leaflet Prolapse?  Rakesh M. Suri, MD, DPhil, Jasmine Grewal,
Free Edge Suture Plication and Remodeling: A Technique for Anterior Mitral Leaflet Prolapse Repair  Pino Fundarò, MD, Daniel G Di Mattia, MD, Maurizio.
Interpapillary muscle distance independently affects severity of functional mitral regurgitation in patients with systolic left ventricular dysfunction 
Muralidhar Padala, PhD, Jorge H. Jimenez, PhD, Ajit P
Benjamin B. Peeler, MD, Irving L. Kron, MD 
Beating-heart, off-pump mitral valve repair by implantation of artificial chordae tendineae: An acute in vivo animal study  Pietro Bajona, MD, William.
Jennifer Ritchie, MS, James N. Warnock, PhD, Ajit P. Yoganathan, PhD 
Acute mitral regurgitation caused by papillary muscle rupture in the immediate postpartum period revealing Ehlers-Danlos syndrome type IV  Pascal Sève,
An intraoperative test device for aortic valve repair
Left ventricular apical papillary fibroelastoma
Andrew W. Siefert, MS, Jorge H. Jimenez, PhD, Kevin J
Dilated cardiomyopathy and functional mitral regurgitation complicated with traumatic ventricular septal defect  Hisato Ito, MD, Kiyohito Yamamoto, MD,
Repair of posterior mitral valve prolapse with a novel leaflet plication clip in an animal model  Eric N. Feins, MD, Haruo Yamauchi, MD, PhD, Gerald R.
Mitral ring annuloplasty relieves tension of the secondary but not primary chordae tendineae in the anterior mitral leaflet  Sten Lyager Nielsen, MD,
Is individualized mitral valve repair in the future?
Chordal Preservation in Mitral Valve Replacement
Papillary heads “optimization” in repairing functional mitral regurgitation  Masashi Komeda, MD, PhD, Yutaka Koyama, Shunsuke Fukaya, Hideki Kitamura 
Mitral insufficiency with a double-orifice mitral valve in an adult patient  Stefano Congiu, MD, Miguel Josa, MD, Xavier Freixa, MD, Manuel Azqueta, MD,
Predicting recurrent mitral regurgitation after mitral valve repair: A difficult endeavor and a necessity  Denis Bouchard, MD, Louis P. Perrault, MD,
Successful repair of a variant of mitral arcade
Samer Kassem, MD, Majed Othman, MD 
The effect of pure mitral regurgitation on mitral annular geometry and three-dimensional saddle shape  Tom C. Nguyen, MD, Akinobu Itoh, MD, Carl J. Carlhäll,
Quick but effective surgery for functional mitral regurgitation secondary to aortic valve disease  Masashi Komeda, MD, PhD  The Journal of Thoracic and.
Chordal cutting technique through aortotomy: A new approach to treat chronic ischemic mitral regurgitation  Georges Fayad, MD, Thomas Modine, MD, Thierry.
Edge-to-edge mitral valve repair with transapical neochord implantation  Andrea Colli, MD, PhD, Laura Besola, MD, Eleonora Bizzotto, MD, Paolo Peruzzo,
Tomasz A. Timek, MDa, David T. Lai, FRACSa, Frederick A
Intermediate-term results of a nonresectional dynamic repair technique in 662 patients with mitral valve prolapse and mitral regurgitation  Gerald M.
Euler's elastica–based biomechanical assessment for neochordal insertion in the treatment of degenerative mitral valve repair  Francesco Nappi, MD, Cristiano.
Muralidhar Padala, BS, Nikolay V. Vasilyev, MD, James W
Mitral valve annuloplasty and papillary muscle relocation oriented by 3-dimensional transesophageal echocardiography for severe functional mitral regurgitation 
The long-term impact of various techniques for tricuspid repair in Ebstein's anomaly  Roland Hetzer, MD, PhD, Paul Hacke, Mariano Javier, Oliver Miera,
Chordal translocation for ischemic mitral regurgitation may ameliorate tethering of the posterior and anterior mitral leaflets  Shinji Masuyama, MD, Akira.
Congenital absence of posteromedial papillary muscle and anterior mitral leaflet chordae: The use of three-dimensional echocardiography and approach in.
“Bow-Tie” mitral valve repair: An adjuvant technique for ischemic mitral regurgitation  Juan P Umaña, MD, Bijan Salehizadeh, BA, Joseph J DeRose, MD, Tamanna.
Barlow disease: Simple and complex
Echocardiographic visualization and quantification of mitral complex during mitral repair for severe functional mitral regurgitation  Kikuko Obase, MD,
Which is the “lord” of the aortic rings?
Hosam Fawzy, MD, Kiyotaka Fukamachi, MD, PhD, C
Mitral valve hemodynamics after repair of acute posterior leaflet prolapse: Quadrangular resection versus triangular resection versus neochordoplasty 
A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet  Jorge H. Jimenez, PhD, Shasan W. Liou, BSc,
Morten O. Jensen, PhD, Henrik Jensen, MD, PhD, Robert A
Annular or subvalvular approach to chronic ischemic mitral regurgitation?  Frederick A. Tibayan, MD, Filiberto Rodriguez, MD, Frank Langer, MD, Mary K.
Imbalanced chordal force distribution causes acute ischemic mitral regurgitation: Mechanistic insights from chordae tendineae force measurements in pigs 
Biomaterials for heart valve replacement: Conjectures and refutations
Ventricular remodeling and mitral valve modifications in dilated cardiomyopathy: New insights from anatomic study  Alexandre Ciappina Hueb, MD, Fabio.
Mitral repair failures are not the robot's fault!
Mitral Valve Basal Chordae: Comparative Anatomy and Terminology
Discussion The Journal of Thoracic and Cardiovascular Surgery
Surgically created double-orifice left atrioventricular valve: A valve-sparing repair in selected atrioventricular septal defects  Loïc Macé, MDa, Patrice.
Extended septal myectomy for hypertrophic obstructive cardiomyopathy with anomalous mitral papillary muscles or chordae  Kenji Minakata, MD, Joseph A.
Intrauterine rupture of anterior tricuspid valve papillary muscle: Tricuspid valve chordae replacement on the first day of life  Renate Kaulitz, MD, Susanne.
Francesco Nappi, MD, Cristiano Spadaccio, MD, PhD 
The arithmetic of a successful mitral valve repair
Chordal replacement with polytetrafluoroethylene sutures for mitral valve repair: A 25- year experience  Tirone E. David, MD, Susan Armstrong, MSc, Joan.
Geometric distortion of the mitral valve apparatus in ischemic mitral regurgitation: Should we really forfeit the opportunity for a complete repair? 
Designing valves: An art or science?
Effects of Annular Size, Transmitral Pressure, and Mitral Flow Rate on the Edge-To- Edge Repair: An In Vitro Study  Jorge H. Jimenez, MS, Joseph Forbess,
Marc Gillinov, MD, Per Wierup, MD, PhD, Stephanie Mick, MD 
Masakazu Aoki, MD, Toshiaki Ito, MD, PhD 
Presentation transcript:

Effect of anterior strut chordal transection on the force distribution on the marginal chordae of the mitral valve  Muralidhar Padala, PhD, Lazarina Gyoneva, BS, Ajit P. Yoganathan, PhD  The Journal of Thoracic and Cardiovascular Surgery  Volume 144, Issue 3, Pages 624-633.e2 (September 2012) DOI: 10.1016/j.jtcvs.2011.10.032 Copyright © 2012 The American Association for Thoracic Surgery Terms and Conditions

Figure 1 A, Atrial surface of anterior leaflet with collagen fibers inserting from anterior strut chordae tendineae; B, ventricular surface of anterior leaflet with fibers from strut chordae; and C, different settings of anterior leaflet tethering for variety of papillary muscle positions. The Journal of Thoracic and Cardiovascular Surgery 2012 144, 624-633.e2DOI: (10.1016/j.jtcvs.2011.10.032) Copyright © 2012 The American Association for Thoracic Surgery Terms and Conditions

Figure 2 A, Ex vivo pulsatile left heart simulator in which chordal forces on native mitral valve chordae tendineae can be measured. B, Mitral valve leaflet and annular sizing using a sizer. C, In vivo measurement of annular tip to papillary muscle tip distance before explanting mitral valve. D, Explanted mitral valve with all structures intact. The Journal of Thoracic and Cardiovascular Surgery 2012 144, 624-633.e2DOI: (10.1016/j.jtcvs.2011.10.032) Copyright © 2012 The American Association for Thoracic Surgery Terms and Conditions

Figure 3 A, Extracted mitral valve sutured onto silicone annulus using sutures. B, Mitral valve mounted into left heart simulator. C, Annular size increase induced with silicone annulus to simulate mitral annular dilation. D, Miniature C-ring force transducers developed with strain gauge technology to mount on chordae tendineae to measure forces acting on them throughout cardiac cycle. The Journal of Thoracic and Cardiovascular Surgery 2012 144, 624-633.e2DOI: (10.1016/j.jtcvs.2011.10.032) Copyright © 2012 The American Association for Thoracic Surgery Terms and Conditions

Figure 4 Top, Experimental protocol used in our study. Bottom, Representative images of mitral valve tethering obtained under different pathologic mitral valve papillary muscle positions, reconstructed from 3-dimensional echocardiograms. The Journal of Thoracic and Cardiovascular Surgery 2012 144, 624-633.e2DOI: (10.1016/j.jtcvs.2011.10.032) Copyright © 2012 The American Association for Thoracic Surgery Terms and Conditions

Figure 5 Top, Ventricular surface of mitral anterior leaflet depicting insertion sites of strut and marginal chordae. Bottom, Left, Posteromedial papillary muscle marginal chordal force at normal and different pathologic papillary muscle positions before chordal cutting. Bottom, Right, Anterolateral papillary muscle marginal chordal force at normal and different pathologic papillary muscle positions before chordal cutting. The Journal of Thoracic and Cardiovascular Surgery 2012 144, 624-633.e2DOI: (10.1016/j.jtcvs.2011.10.032) Copyright © 2012 The American Association for Thoracic Surgery Terms and Conditions

Figure 6 Changes in marginal chordal forces before and after chordal cutting in left and right marginal chordae under different papillary muscle positions. Row 1, Apical papillary muscle displacement depicting minimal changes in measured chordal forces before and after chordal cutting. Row 2, Apical lateral papillary muscle displacement depicting significant increase in chordal force before and after chordal cutting in both chordae. Row 3, Apical lateral posterior papillary muscle displacement depicting significant changes in chordal force before and after chordal cutting in both chordae. The Journal of Thoracic and Cardiovascular Surgery 2012 144, 624-633.e2DOI: (10.1016/j.jtcvs.2011.10.032) Copyright © 2012 The American Association for Thoracic Surgery Terms and Conditions

Figure 7 Changes in anterior marginal chordal force before and after chordal cutting with progressive change in papillary muscle positions. Slope of increase in marginal chordal force after chordal cutting was significantly greater than before chordal cutting in the case of progressive displacement of papillary muscles after chordal cutting. The Journal of Thoracic and Cardiovascular Surgery 2012 144, 624-633.e2DOI: (10.1016/j.jtcvs.2011.10.032) Copyright © 2012 The American Association for Thoracic Surgery Terms and Conditions

Figure E1 Photograph of a porcine mitral valve depicting the various chordae tendineae classified based on their insertion zone in the mitral leaflet. The red dotted lines depict the location of the strut chordal transection and the yellow dotted lines depict the location where the force transducers are mounted. The Journal of Thoracic and Cardiovascular Surgery 2012 144, 624-633.e2DOI: (10.1016/j.jtcvs.2011.10.032) Copyright © 2012 The American Association for Thoracic Surgery Terms and Conditions

Figure E2 Native porcine valve depicting increase in free edge tethering even under diastolic conditions, with lateral and posterior displacement of papillary muscles. Such tethering not evident with just apical displacement. A = Anterior; APM = apical papillary muscle; P = posterior; PPM = posterior papillary muscle. The Journal of Thoracic and Cardiovascular Surgery 2012 144, 624-633.e2DOI: (10.1016/j.jtcvs.2011.10.032) Copyright © 2012 The American Association for Thoracic Surgery Terms and Conditions

Figure E3 Left, Valve from experimental setup in which chordal cutting relieved leaflet tethering and restored normal leaflet coaptation with apical papillary muscle displacement only. Right, Regurgitant orifice persisted even after repair procedure with apical posterior and lateral displacement of muscles. The Journal of Thoracic and Cardiovascular Surgery 2012 144, 624-633.e2DOI: (10.1016/j.jtcvs.2011.10.032) Copyright © 2012 The American Association for Thoracic Surgery Terms and Conditions