Instructors: Majd Sakr and Khaled Harras

Slides:



Advertisements
Similar presentations
Carnegie Mellon 1 Dynamic Memory Allocation: Basic Concepts : Introduction to Computer Systems 17 th Lecture, Oct. 21, 2010 Instructors: Randy Bryant.
Advertisements

Dynamic Memory Allocation I Topics Simple explicit allocators Data structures Mechanisms Policies CS 105 Tour of the Black Holes of Computing.
Dynamic Memory Allocation I Topics Basic representation and alignment (mainly for static memory allocation, main concepts carry over to dynamic memory.
Chris Riesbeck, Fall 2007 Dynamic Memory Allocation Today Dynamic memory allocation – mechanisms & policies Memory bugs.
1. Dynamic Memory Allocation. Dynamic Memory Allocation Programmers use dynamic memory allocators (such as malloc ) to acquire VM at run time.  For data.
Dynamic Memory Allocation I October 16, 2008 Topics Simple explicit allocators Data structures Mechanisms Policies lecture-15.ppt “The course that.
Some topics in Memory Management
1 Dynamic Memory Allocation: Basic Concepts Andrew Case Slides adapted from Jinyang Li, Randy Bryant and Dave O’Hallaro.
Dynamic Memory Allocation I Nov 5, 2002 Topics Simple explicit allocators Data structures Mechanisms Policies class21.ppt “The course that gives.
– 1 – Dynamic Memory Allocation – beyond the stack and globals Stack Easy to allocate (decrement esp) Easy to deallocate (increment esp) Automatic allocation.
Dynamic Memory Allocation I May 21, 2008 Topics Simple explicit allocators Data structures Mechanisms Policies.
Dynamic Memory Allocation I November 1, 2006 Topics Simple explicit allocators Data structures Mechanisms Policies class18.ppt “The course that.
– 1 – P6 (PentiumPro,II,III,Celeron) memory system bus interface unit DRAM Memory bus instruction fetch unit L1 i-cache L2 cache cache bus L1 d-cache inst.
L6: Malloc Lab Writing a Dynamic Storage Allocator October 30, 2006
University of Washington Today Lab 5 out  Puts a *lot* together: pointers, debugging, C, etc.
University of Washington Today Finished up virtual memory On to memory allocation Lab 3 grades up HW 4 up later today. Lab 5 out (this afternoon): time.
1 Dynamic Memory Allocation: Basic Concepts. 2 Today Basic concepts Implicit free lists.
Writing You Own malloc() March 29, 2003 Topics Explicit Allocation Data structures Mechanisms Policies class19.ppt “The course that gives CMU its.
Consider Starting with 160 k of memory do: Starting with 160 k of memory do: Allocate p1 (50 k) Allocate p1 (50 k) Allocate p2 (30 k) Allocate p2 (30 k)
Dynamic Memory Allocation II
Today Moving on to… Memory allocation.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Dynamic Memory Allocation: Basic Concepts :
Dynamic Memory Allocation April 9, 2002 Topics Simple explicit allocators Data structures Mechanisms Policies Reading: 10.9 Problems: and class21.ppt.
University of Washington Today More memory allocation!
Carnegie Mellon 1 Dynamic Memory Allocation: Basic Concepts Instructors: Adapted from CMU course
University of Washington Implementation Issues How do we know how much memory to free given just a pointer? How do we keep track of the free blocks? How.
Memory Management I: Dynamic Storage Allocation Oct 8, 1998 Topics User-level view Policies Mechanisms class14.ppt Introduction to Computer Systems.
Memory Management What if pgm mem > main mem ?. Memory Management What if pgm mem > main mem ? Overlays – program controlled.
Instructor: Phil Gibbons
Section 10: Memory Allocation Topics
CS 3214 Introduction to Computer Systems
Dynamic Memory Allocation I
Dynamic Memory Allocation
Virtual memory.
Virtual Memory: Systems
Instructor: Haryadi Gunawi
Memory Management I: Dynamic Storage Allocation Oct 7, 1999
Memory Management: Dynamic Allocation
Dynamic Memory Allocation I October 28, 2003
Dynamic Memory Allocation: Basic Concepts CS220: Computer Systems II
The Hardware/Software Interface CSE351 Winter 2013
Memory Allocation I CSE 351 Spring 2017
Dynamic Memory Allocation – beyond the stack and globals
Virtual Memory: Systems
Memory Management I: Dynamic Storage Allocation March 2, 2000
Virtual Memory: Systems
Memory Allocation I CSE 351 Spring 2017
User-Level Dynamic Memory Allocation: Malloc and Free
Pentium/Linux Memory System
P6 (PentiumPro,II,III,Celeron) memory system
Dynamic Memory Allocation I
CS703 - Advanced Operating Systems
Dynamic Memory Allocation
Memory Allocation I CSE 351 Winter 2018
Dynamic Memory Allocation I
Pentium III / Linux Memory System April 4, 2000
Dynamic Memory Allocation: Basic Concepts /18-213/14-513/15-513: Introduction to Computer Systems 19th Lecture, October 30, 2018.
Virtual Memory.
Memory Allocation I CSE 351 Winter 2018
Instructor: Phil Gibbons
Memory Allocation II CSE 351 Autumn 2017
Operating System Chapter 7. Memory Management
Memory Allocation II CSE 351 Winter 2018
Dynamic Memory Allocation November 2, 2000
Memory Allocation II CSE 351 Winter 2018
Dynamic Memory Allocation: Basic Concepts CSCI 380: Operating Systems
Virtual Memory: Systems CSCI 380: Operating Systems
Dynamic Memory Allocation I
P6 (PentiumPro,II,III,Celeron) memory system
Presentation transcript:

Instructors: Majd Sakr and Khaled Harras Introduction to Computer Systems 15-213, fall 2009 18th Lecture, Oct. 28th Instructors: Majd Sakr and Khaled Harras

Last Time: Linux VM as Collection of “Areas” process virtual memory vm_area_struct task_struct mm_struct vm_end vm_start mm pgd vm_prot vm_flags mmap shared libraries vm_next 0x40000000 vm_end vm_start pgd: Page directory address vm_prot: Read/write permissions for this area vm_flags Shared with other processes or private to this process data vm_prot vm_flags 0x0804a020 text vm_next vm_end vm_start 0x08048000 vm_prot vm_flags vm_next

Last Time: Memory Mapping Creation of new VM area Create new vm_area_struct and page tables for area Area can be backed by (i.e., get its initial values from) : File on disk copy-on-write possible (e.g., fork()) Nothing (e.g., .bss) demand-zero Key point: no virtual pages are copied into physical memory until they are referenced! Known as “demand paging”

Last Time: P6 Address Translation 32 L2 and DRAM CPU result 20 12 virtual address (VA) VPN VPO L1 miss L1 hit 16 4 TLBT TLBI L1 (128 sets, 4 lines/set) TLB hit TLB miss ... ... TLB (16 sets, 4 entries/set) 10 10 VPN1 VPN2 20 12 20 7 5 PPN PPO CT CI CO physical address (PA) PDE PTE Page tables PDBR

Today Dynamic memory allocation

Process Memory Image %esp the “brk” ptr memory protected from user code kernel virtual memory stack %esp Allocators request additional heap memory from the kernel using the sbrk() function: error = sbrk(amt_more) the “brk” ptr run-time heap (via malloc) uninitialized data (.bss) initialized data (.data) program text (.text)

Why Dynamic Memory Allocation? Sizes of needed data structures may only be known at runtime

Dynamic Memory Allocation Memory allocator? VM hardware and kernel allocate pages Application objects are typically smaller Allocator manages objects within pages Explicit vs. Implicit Memory Allocator Explicit: application allocates and frees space In C: malloc() and free() Implicit: application allocates, but does not free space In Java, ML, Lisp: garbage collection Allocation A memory allocator doles out memory blocks to application A “block” is a contiguous range of bytes of any size, in this context Today: simple explicit memory allocation Application Dynamic Memory Allocator Heap Memory

Malloc Package #include <stdlib.h> void *malloc(size_t size) Successful: Returns a pointer to a memory block of at least size bytes (typically) aligned to 8-byte boundary If size == 0, returns NULL Unsuccessful: returns NULL (0) and sets errno void free(void *p) Returns the block pointed at by p to pool of available memory p must come from a previous call to malloc() or realloc() void *realloc(void *p, size_t size) Changes size of block p and returns pointer to new block Contents of new block unchanged up to min of old and new size Old block has been free()'d (logically, if new != old)

Malloc Example void foo(int n, int m) { int i, *p; /* allocate a block of n ints */ p = (int *)malloc(n * sizeof(int)); if (p == NULL) { perror("malloc"); exit(0); } for (i=0; i<n; i++) p[i] = i; /* add m bytes to end of p block */ if ((p = (int *)realloc(p, (n+m) * sizeof(int))) == NULL) { perror("realloc"); for (i=n; i < n+m; i++) p[i] = i; /* print new array */ for (i=0; i<n+m; i++) printf("%d\n", p[i]); free(p); /* return p to available memory pool */

Assumptions Made in This Lecture Memory is word addressed (each word can hold a pointer) Allocated block (4 words) Free block (3 words) Free word Allocated word

Allocation Example p1 = malloc(4) p2 = malloc(5) p3 = malloc(6) free(p2) p4 = malloc(2)

Constraints Applications Allocators Can issue arbitrary sequence of malloc() and free() requests free() requests must be to a malloc()’d block Allocators Can’t control number or size of allocated blocks Must respond immediately to malloc() requests i.e., can’t reorder or buffer requests Must allocate blocks from free memory i.e., can only place allocated blocks in free memory Must align blocks so they satisfy all alignment requirements 8 byte alignment for GNU malloc (libc malloc) on Linux boxes Can manipulate and modify only free memory Can’t move the allocated blocks once they are malloc()’d i.e., compaction is not allowed

Performance Goal: Throughput Given some sequence of malloc and free requests: R0, R1, ..., Rk, ... , Rn-1 Goals: maximize throughput and peak memory utilization These goals are often conflicting Throughput: Number of completed requests per unit time Example: 5,000 malloc() calls and 5,000 free() calls in 10 seconds Throughput is 1,000 operations/second How to do malloc() and free() in O(1)? What’s the problem?

Performance Goal: Peak Memory Utilization Given some sequence of malloc and free requests: R0, R1, ..., Rk, ... , Rn-1 Def: Aggregate payload Pk malloc(p) results in a block with a payload of p bytes After request Rk has completed, the aggregate payload Pk is the sum of currently allocated payloads all malloc()’d stuff minus all free()’d stuff Def: Current heap size = Hk Assume Hk is monotonically nondecreasing reminder: it grows when allocator uses sbrk() Def: Peak memory utilization after k requests Uk = ( maxi<k Pi ) / Hk

Fragmentation Poor memory utilization caused by fragmentation internal fragmentation external fragmentation

Internal Fragmentation For a given block, internal fragmentation occurs if payload is smaller than block size Caused by overhead of maintaining heap data structures padding for alignment purposes explicit policy decisions (e.g., to return a big block to satisfy a small request) Depends only on the pattern of previous requests thus, easy to measure block Internal fragmentation payload Internal fragmentation

External Fragmentation Occurs when there is enough aggregate heap memory, but no single free block is large enough Depends on the pattern of future requests Thus, difficult to measure p1 = malloc(4) p2 = malloc(5) p3 = malloc(6) free(p2) Oops! (what would happen now?) p4 = malloc(6)

Implementation Issues How to know how much memory is being free()’d when it is given only a pointer (and no length)? How to keep track of the free blocks? What to do with extra space when allocating a block that is smaller than the free block it is placed in? How to pick a block to use for allocation—many might fit? How to reinsert a freed block into the heap?

Knowing How Much to Free Standard method Keep the length of a block in the word preceding the block. This word is often called the header field or header Requires an extra word for every allocated block p0 p0 = malloc(4) 5 block size data free(p0)

Keeping Track of Free Blocks Method 1: Implicit list using length—links all blocks Method 2: Explicit list among the free blocks using pointers Method 3: Segregated free list Different free lists for different size classes Method 4: Blocks sorted by size Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the length used as a key 5 4 6 2 5 4 6 2

Implicit List For each block we need: length, is-allocated? Could store this information in two words: wasteful! Standard trick If blocks are aligned, some low-order address bits are always 0 Instead of storing an always-0 bit, use it as a allocated/free flag When reading size word, must mask out this bit 1 word size a a = 1: allocated block a = 0: free block size: block size payload: application data (allocated blocks only) Format of allocated and free blocks payload optional padding

Example (Blackboard?) 8-byte alignment Sequence of blocks in heap: 2/0, 4/1, 8/0, 4/1 2/0 4/1 8/0 0/1 Free word Allocated word Allocated word unused Start of heap 8 bytes = 2 word alignment 8-byte alignment May require initial unused word Causes some internal fragmentation One word (0/1) to mark end of list Here: block size in words for simplicity

Implicit List: Finding a Free Block First fit: Search list from beginning, choose first free block that fits: (Cost?) Can take linear time in total number of blocks (allocated and free) In practice it can cause “splinters” at beginning of list Next fit: Like first-fit, but search list starting where previous search finished Should often be faster than first-fit: avoids re-scanning unhelpful blocks Some research suggests that fragmentation is worse Best fit: Search the list, choose the best free block: fits, with fewest bytes left over Keeps fragments small—usually helps fragmentation Will typically run slower than first-fit p = start; while ((p < end) && \\ not passed end ((*p & 1) || \\ already allocated (*p <= len))) \\ too small p = p + (*p & -2); \\ goto next block (word addressed)

Implicit List: Allocating in Free Block Allocating in a free block: splitting Since allocated space might be smaller than free space, we might want to split the block 4 4 6 2 p addblock(p, 4) 4 4 4 2 2 void addblock(ptr p, int len) { int newsize = ((len + 1) >> 1) << 1; // round up to even int oldsize = *p & -2; // mask out low bit *p = newsize | 1; // set new length if (newsize < oldsize) *(p+newsize) = oldsize - newsize; // set length in remaining } // part of block Blackboard? (will disappear)

Implicit List: Allocating in Free Block Allocating in a free block: splitting Since allocated space might be smaller than free space, we might want to split the block 4 4 6 2 p addblock(p, 4) 4 4 4 2 2 void addblock(ptr p, int len) { int newsize = ((len + 1) >> 1) << 1; // round up to even int oldsize = *p & -2; // mask out low bit *p = newsize | 1; // set new length if (newsize < oldsize) *(p+newsize) = oldsize - newsize; // set length in remaining } // part of block

Implicit List: Freeing a Block Simplest implementation: Need only clear the “allocated” flag void free_block(ptr p) { *p = *p & -2 } But can lead to “false fragmentation” There is enough free space, but the allocator won’t be able to find it 4 4 4 2 2 p free(p) 4 4 4 2 2 Oops! malloc(5)

Implicit List: Coalescing Join (coalesce) with next/previous blocks, if they are free Coalescing with next block But how do we coalesce with previous block? 4 4 4 2 2 logically gone p free(p) 4 4 6 2 2 void free_block(ptr p) { *p = *p & -2; // clear allocated flag next = p + *p; // find next block if ((*next & 1) == 0) *p = *p + *next; // add to this block if } // not allocated

Implicit List: Bidirectional Coalescing Boundary tags [Knuth73] Replicate size/allocated word at “bottom” (end) of free blocks Allows us to traverse the “list” backwards, but requires extra space Important and general technique! 4 6 Header size a a = 1: allocated block a = 0: free block size: total block size payload: application data (allocated blocks only) Format of allocated and free blocks payload and padding Boundary tag (footer) size a

Constant Time Coalescing Case 1 Case 2 Case 3 Case 4 allocated allocated free free block being freed allocated free allocated free

Constant Time Coalescing (Case 1) n 1 n m2 1 m2 1 m2 1 m2 1

Constant Time Coalescing (Case 2) 1 m1 1 m1 1 m1 1 n 1 n+m2 n 1 m2 m2 n+m2

Constant Time Coalescing (Case 3) n+m1 m1 n 1 n 1 n+m1 m2 1 m2 1 m2 1 m2 1

Constant Time Coalescing (Case 4) n+m1+m2 m1 n 1 n 1 m2 m2 n+m1+m2

Disadvantages of Boundary Tags Internal fragmentation Can it be optimized? Which blocks need the footer tag? What does that mean?

Summary of Key Allocator Policies Placement policy: First-fit, next-fit, best-fit, etc. Trades off lower throughput for less fragmentation Interesting observation: segregated free lists (next lecture) approximate a best fit placement policy without having to search entire free list Splitting policy: When do we go ahead and split free blocks? How much internal fragmentation are we willing to tolerate? Coalescing policy: Immediate coalescing: coalesce each time free() is called Deferred coalescing: try to improve performance of free() by deferring coalescing until needed. Examples: Coalesce as you scan the free list for malloc() Coalesce when the amount of external fragmentation reaches some threshold

Implicit Lists: Summary Implementation: very simple Allocate cost: linear time worst case Free cost: constant time worst case even with coalescing Memory usage: will depend on placement policy First-fit, next-fit or best-fit Not used in practice for malloc()/free() because of linear-time allocation used in many special purpose applications However, the concepts of splitting and boundary tag coalescing are general to all allocators