Volume 9, Issue 1, Pages (January 2002)

Slides:



Advertisements
Similar presentations
GRID and docking analyses reveal a molecular basis for flavonoid inhibition of Src family kinase activity  Bernice Wright, Kimberly A. Watson, Liam J.
Advertisements

Pratistha Ranjitkar, Amanda M. Brock, Dustin J. Maly 
Volume 11, Issue 5, Pages (May 2004)
Structure of the Rho Transcription Terminator
R.Ian Menz, John E. Walker, Andrew G.W. Leslie  Cell 
Probing Structural Determinants Distal to the Site of Hydrolysis that Control Substrate Specificity of the 20S Proteasome  Michael Groll, Tamim Nazif,
Volume 17, Issue 1, Pages (January 2010)
Volume 14, Issue 4, Pages (April 2007)
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Volume 11, Issue 3, Pages (March 2007)
Volume 16, Issue 6, Pages (June 2008)
Arvin C. Dar, Michael S. Lopez, Kevan M. Shokat  Chemistry & Biology 
Kinetochores: NDC80 Toes the Line
Structural Basis of Caspase Inhibition by XIAP
Volume 21, Issue 5, Pages (May 2013)
Engineering a Protein Scaffold from a PHD Finger
SH3-SH2 Domain Orientation in Src Kinases
Kei-ichi Okazaki, Shoji Takada  Structure 
Volume 19, Issue 7, Pages (July 2012)
Volume 14, Issue 12, Pages (December 2006)
Debanu Das, Millie M Georgiadis  Structure 
Volume 108, Issue 6, Pages (March 2002)
Volume 11, Issue 3, Pages (March 2003)
Xuewu Zhang, Jodi Gureasko, Kui Shen, Philip A. Cole, John Kuriyan 
Volume 14, Issue 5, Pages (May 2007)
Structure of a tRNA Repair Enzyme and Molecular Biology Workhorse
Joseph D. Mancias, Jonathan Goldberg  Molecular Cell 
Structural and Biochemical Mechanisms for the Specificity of Hormone Binding and Coactivator Assembly by Mineralocorticoid Receptor  Yong Li, Kelly Suino,
Crystal Structure of an Inactive Akt2 Kinase Domain
Analysis of the π-π Stacking Interactions between the Aminoglycoside Antibiotic Kinase APH(3′)-IIIa and Its Nucleotide Ligands  David D. Boehr, Adam R.
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Volume 21, Issue 10, Pages (October 2013)
Volume 10, Issue 3, Pages (March 2003)
Volume 10, Issue 4, Pages (October 2002)
Volume 28, Issue 6, Pages (December 2007)
Volume 16, Issue 6, Pages (June 2008)
Volume 106, Issue 6, Pages (September 2001)
Zhenjian Cai, Nabil H. Chehab, Nikola P. Pavletich  Molecular Cell 
Volume 15, Issue 9, Pages (September 2008)
Volume 26, Issue 2, Pages e4 (February 2018)
Volume 22, Issue 12, Pages (December 2014)
Sachin Surade, Tom L. Blundell  Chemistry & Biology 
Volume 20, Issue 10, Pages (October 2012)
Volume 21, Issue 1, Pages (January 2014)
David Jeruzalmi, Mike O'Donnell, John Kuriyan  Cell 
Volume 21, Issue 7, Pages (July 2013)
Volume 23, Issue 6, Pages (June 2015)
Structural Analysis of the Protein Phosphatase 1 Docking Motif: Molecular Description of Binding Specificities Identifies Interacting Proteins  Heike.
Volume 11, Issue 12, Pages (December 2003)
David Jeruzalmi, Mike O'Donnell, John Kuriyan  Cell 
Inhibitor Specificity via Protein Dynamics
Pratistha Ranjitkar, Amanda M. Brock, Dustin J. Maly 
Volume 23, Issue 11, Pages (November 2015)
Ethan B. Butler, Yong Xiong, Jimin Wang, Scott A. Strobel 
Structural and Biochemical Mechanisms for the Specificity of Hormone Binding and Coactivator Assembly by Mineralocorticoid Receptor  Yong Li, Kelly Suino,
Volume 10, Issue 3, Pages (March 2003)
Volume 105, Issue 1, Pages (April 2001)
Michael A. McDonough, Christopher J. Schofield  Chemistry & Biology 
Gregory J. Miller, James H. Hurley  Molecular Cell 
Transfer RNA–Mediated Editing in Threonyl-tRNA Synthetase
Design of allele-specific inhibitors to probe protein kinase signaling
Jue Wang, Jia-Wei Wu, Zhi-Xin Wang  Structure 
Arvin C. Dar, Michael S. Lopez, Kevan M. Shokat  Chemistry & Biology 
Volume 113, Issue 3, Pages (August 2017)
The Structure of JNK3 in Complex with Small Molecule Inhibitors
Volume 27, Issue 5, Pages (September 2007)
Volume 10, Issue 4, Pages (April 2003)
Guilty as charged Cancer Cell
Debanu Das, Millie M Georgiadis  Structure 
Volume 15, Issue 6, Pages (September 2004)
Presentation transcript:

Volume 9, Issue 1, Pages 25-33 (January 2002) Mutant Tyrosine Kinases with Unnatural Nucleotide Specificity Retain the Structure and Phospho-Acceptor Specificity of the Wild-Type Enzyme  Laurie A. Witucki, Xin Huang, Kavita Shah, Yi Liu, Saw Kyin, Michael J. Eck, Kevan M. Shokat  Chemistry & Biology  Volume 9, Issue 1, Pages 25-33 (January 2002) DOI: 10.1016/S1074-5521(02)00091-1

Figure 1 Chemical Structures of A*TP Analogs Used in This Study 1: N6-(benzyl) ATP; 2: N6-(cyclopentyl) ATP. Definitions of analog-sensitive (as) kinase mutants used in this study. Chemistry & Biology 2002 9, 25-33DOI: (10.1016/S1074-5521(02)00091-1)

Figure 2 Comparison of Wild-Type and Analog-Specific c-Src Crystal Structures (A) The crystal structure of c-Src-as1 superimposed on wild-type c-Src. c-Src-as1 is shown in gray, and c-Src is in red. The rmsd for the overlay is 0.35 Å. (B) The binding of the A*TP analog, N6-(benzyl) ADP to the mutant c-Src (T338G) kinase. The surface corresponding to the glycine residue at the 338 position is colored red. The benzyl ring of the A*TP analog projects into a pocket in the nucleotide binding cleft. This pocket is made accessible by the c-Src (T338G) point mutation. For clarity, the 11 residues that bind over the nucleotide at the front of the nucleotide cleft are omitted from the figure in order to more clearly show the surface at the back of the nucleotide binding pocket where the 338 residue lies. The omitted residues are c-Src 272–282. (C) The steric clash of the wild-type c-Src threonine residue at the 338 position, shown in red, with the N6-(benzyl) ATP analog (blue). The gray surface was built over the crystal structure of the mutant kinase overlayed with the wild-type c-Src crystal structure, and the surface was rendered over threonine 338 (red). The N6-(benzyl) ADP (blue) is superimposed on the AMP-PNP ligand (yellow). Chemistry & Biology 2002 9, 25-33DOI: (10.1016/S1074-5521(02)00091-1)

Figure 3 Silver-Stain SDS-PAGE (12%) of the v-Src Kinases Used in This Study Lane 1, wild-type GST-v-Src (XD-4 construct: XD-4 [truncated v-Src kinase including the full catalytic domain, 77–225]); lane 2, GST-v-Src-as1; and lane 3, GST-v-Src-as2. Chemistry & Biology 2002 9, 25-33DOI: (10.1016/S1074-5521(02)00091-1)

Figure 4 Specificity Profile of Wild-Type and Analog-Specific v-Src with N6-(Benzyl) ATP The specificity profile of the v-Src-as2 mutant with N6-(benzyl) ATP is shown in gray. It is compared to the wild-type v-Src/ATP system, shown in black. Chemistry & Biology 2002 9, 25-33DOI: (10.1016/S1074-5521(02)00091-1)

Figure 5 Specificity Profile of Wild-Type and Analog-Specific v-Src with N6-(Cyclopentyl) ATP The specificity profile of the v-Src-as1 mutant with the A*TP analog N6-(cyclopentyl) ATP is shown in gray. It is compared to the wild-type v-Src/ATP system, shown in black. Chemistry & Biology 2002 9, 25-33DOI: (10.1016/S1074-5521(02)00091-1)

Figure 6 The Specificity Profile of the Src Family Kinase Fyn. The mutant Fyn-as1 tested with N6-(benzyl) ATP is shown in gray. It is compared to the wild-type Fyn/ATP system, shown in black. Chemistry & Biology 2002 9, 25-33DOI: (10.1016/S1074-5521(02)00091-1)