Chapter 5 Sections 2.3 – 2.4 – 2.5
Y = SIN X X is your Angle (θ) Y is your Height
Table
y = Sin(x) 0 < x < 2π
y = sin x,
Definition
Y = Sin x Sin(-x) = - Sin(x) ODD FUNCTION: Symmetric About Origin Like f(x) = x3 Sin(-x) = - Sin(x) Example: Sin(- 𝜋 2 )=−1=−𝑆𝑖𝑛( 𝜋 2 )
Y = Sin x Sin(-2) = Sin(0) = Sin(2) = Sin(2n), for any Integer n Period = 2𝜋 Sin(-2) = Sin(0) = Sin(2) = Sin(2n), for any Integer n Sin(θ) = Sin(θ + 2n) , for any Integer n FUNDAMENTAL PERIOD: First Complete Cycle (2𝜋) Amplitute: Max Absolute Value of Height = 1
Graph of y= csc x = 1 𝑆𝑖𝑛 𝑥 Domain: ALL REALS, Except Integer Multiples of Range: (-∞, -1] U [1, ∞) NO AMPLITUTE Period = 2
Y = COS X X is your Angle (θ) Y is your Height
Table
y = cos x, 0 < x < 2π
Figure: y = cos x,
Y = Cos x Cos(-x) = Cos(x) EVEN FUNCTION: Symmetric About Y-Axis Like f(x) = x2 Cos(-x) = Cos(x) Example: Cos(- 𝜋 2 )=0=Cos( 𝜋 2 )
Y = Cos x Cos(-2) = Cos(0) = Cos(2) = Cos(2n), for any Integer n Period = 2𝜋 Cos(-2) = Cos(0) = Cos(2) = Cos(2n), for any Integer n Cos(θ) = Cos(θ + 2n) , for any Integer n FUNDAMENTAL PERIOD: First Complete Cycle (2𝝅) Amplitute: Max Absolute Value of Height = 1
Graph of y= sec x = 1 𝐶𝑜𝑠 𝑥 Domain: ALL REALS, Except Odd Integer Multiples of 𝜋 2 Range: (-∞, -1] U [1, ∞) NO AMPLITUTE Period = 2
Y = Tan X = 𝑆𝑖𝑛 𝑋 𝐶𝑜𝑠 𝑋 X is your Angle (θ) Y is your Height
Graph of
Table
Figure: y = tan x
Y = Tan x Tan(-x) = - Tan(x) ODD FUNCTION: Symmetric About Origin Like f(x) = x3 Tan(-x) = - Tan(x) Example: Tan(- 𝜋 4 )=−1=−Tan( 𝜋 4 )
Y = Tan x Tan(-) = Tan(0) = Tan() = Tan(n), for any Integer n Period = 𝜋 Tan(-) = Tan(0) = Tan() = Tan(n), for any Integer n Tan(θ) = Tan(θ + n) , for any Integer n FUNDAMENTAL PERIOD: First Complete Cycle (𝜋) Amplitute: NONE Domain: All Real Numbers, Except Odd Multiples of 𝜋 2 Range: (-∞, ∞)
Table: y = cot x
Figure: Graph of y = cot x
Y = Cot x = 1 𝑇𝑎𝑛 𝑋 Cot(-x) = - Cot(x) ODD FUNCTION: Symmetric About Origin Like f(x) = x3 Cot(-x) = - Cot(x) Example: Cot(- 𝜋 4 )=−1=−Cot( 𝜋 4 )
Y = Cot x Period = 𝜋 Cot(-3/2) = Cot(-/2) = Tan(/2) = Tan(n/2), for any Integer n Cot(θ) = Cot(θ + n) , for any Integer n FUNDAMENTAL PERIOD: First Complete Cycle (𝜋) Amplitute: NONE Domain: All Real Numbers, Except Odd Multiples of Range: (-∞, ∞)
Table
Theorem
Graph Functions of the Form y=A sin(wx) Using Transformations
Solution
Figure: y = - sin(2x)
Graph Functions of the Form y=A cos(wx) Using Transformations
Example
Solution
Figure
Example
Solution
Find an Equation for a Sinusoidal Graph
Figure
Example Figure 94
Solution
Graph Functions of the Form y=A tan(wx)+B and y=A cot(wx)+B
Example
Solution Figure 97
Example
Solution
Solution continued
Graph Functions of the Form y=A csc(wx)+B and y=A sec(wx)+B
Example
Solution Figure 102
Example
Solution
Figure
Determine the Signs of the Trigonometric Functions in a Quadrant
Figure
Table
Figure
Example
Solution
Use Even-Odd Properties to Find the Exact Values of the Trigonometric Functions
Figure
Example
Solution
Find the Values of the Trigonometric Functions Using Fundamental Identities
Example
Solution
Example
Solution
Find the Exact Values of the Trigonometric Functions of an Angle Given One of the Functions and the Quadrant of the Angle
Example
Solution Option 1 Using a Circle
Solution Option 1 Using a Circle continued
Solution Option 2 Using Identities
Solution Option 2 Using Identities continued
Example
Solution Option 1 Using a Circle
Figure
Solution Option 2 Using Identities
Solution Option 2 Using Identities continued