CALICE simulation results G.Villani 06

Slides:



Advertisements
Similar presentations
of Single-Type-Column 3D silicon detectors
Advertisements

Wieman: 1 LBNL Use Fe55 x ray count rates to determine if photo gate is collecting charge from thin P well layer or from the full epi layer.
Invariant mass plot for different geometry schemes using HSD generator Hemen Kalita*,B Bhattacharjee*, P Bhaduri and S Chattopadhyay * Dept of Physics,
A) 80 b) 53 c) 13 d) x 2 = : 10 = 3, x 3 = 309.
1 CALICE simulation results G.Villani 06 Cell size: 50 x 50  m 2 21 hits simulated, 5  m pitch 121 extrapolated hits / pixel 961 extrapolated hits /
1 Timing in HCAL Digitization Rick Wilkinson. 2 Timing We should try to maximize charge in time bin 5, for high energy (no time slew) We should try to.
28 Feb 2006Digi - Paul Dauncey1 In principle change from simulation output to “raw” information equivalent to that seen in real data Not “reconstruction”,
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell 16 μm x 16 μm P-well 17 μm x 17 μm Collecting diodes 3.6 μm x 3.6 μm Bias: NWell 3.5V Diodes:
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 ECFA 2006, Valencia 1 MAPS-based ECAL Option for ILC ECFA 2006, Valencia, Spain Konstantin.
G.Villani march 071 CALICE pixel Deep P-Well results Nwells P-well 3μm guard ring Diodes [3.6,1.8,0.9] x[3.6,1.8,0.9]μm 2 Bias: NWell 1.8/1V Diodes: 1.5V.
Thursday, May 10th, 2007 Calice Collaboration meeting --- A.-M. Magnan --- IC London 1 Progress Report on the MAPS ECAL R&D on behalf of the MAPS group:
November 30th, 2006MAPS meeting - Anne-Marie Magnan - Imperial College London 1 MAPS simulation Application of charge diffusion on Geant4 simulation and.
Tera-Pixel APS for CALICE Progress 20 th October 2006 [JC+RT]
1 The MAPS ECAL ECFA-2008; Warsaw, 11 th June 2008 John Wilson (University of Birmingham) On behalf of the CALICE MAPS group: J.P.Crooks, M.M.Stanitzki,
A Secure Network Access Protocol (SNAP) A. F. Al Shahri, D. G. Smith and J. M. Irvine Proceedings of the Eighth IEEE International Symposium on Computers.
Tera-Pixel APS for CALICE Progress meeting, 17 th May 2006 Jamie Crooks, Microelectronics/RAL.
22-s02 27-s02 25-s04 20-s03 20-s06,7 28-s01 20-s04 22-s01 27-s01 20-s05.
Tera-Pixel APS for CALICE Progress 13 th November 2006.
1 CALICE D4 simulation results G.Villani feb. 06 Cell size: 25 x 25  m 2 Epitaxial thickness: 20  m Diode location: S4 Diode size: 1.5 x 1.5  m 2 Cell.
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell ≈ 900 μm 2 P-well 1μm ring gap Collecting diodes 3.6 x 3.6 μm 2 Bias: NWell 3.5V Diodes: 1.5V.
TeraPixel APS for CALICE Progress meeting 9th Dec 2005 Jamie Crooks, Microelectronics/RAL.
1 CALICE simulation results G.Villani oct. 06 Progress on CALICE MAPS detector simulations: Results for 1.8 x 1.8 µm 2 Discussions & conclusions Next step.
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell ≈ 900 μm 2 P-well 1μm ring gap Collecting diodes 3.6 x 3.6 μm 2 Bias: NWell 3.5V Diodes: 1.5V.
Principle of operation and limits of application
Rutherford Appleton Laboratory Particle Physics Department A Novel CMOS Monolithic Active Pixel Sensor with Analog Signal Processing and 100% Fill factor.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
First Results from Cherwell, a CMOS sensor for Particle Physics By James Mylroie-Smith
1 Nick Sinev LCWS08, University of Illinois at Chicago November 18, 2008 Status of the Chronopixel project J. E. Brau, N. B. Sinev, D. M. Strom University.
Test ISIS1 P-well device on board V1.4 RAL Z. Zhang & K. Stefanov.
Specifications & motivation 2  Lowering integration time would significantly reduce background  Lowering power would significantly reduce material budget.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
Tera-Pixel APS for CALICE Jamie Crooks, Microelectronics/RAL SRAM Column Concept.
First tests of CHERWELL, a Monolithic Active Pixel Sensor. A CMOS Image Sensor (CIS) using 180 nm technology James Mylroie-Smith Queen Mary, University.
NA62 Gigatracker Working Group Meeting 23 March 2010 Massimiliano Fiorini CERN.
Charge Collection and Trapping in Epitaxial Silicon Detectors after Neutron-Irradiation Thomas Pöhlsen, Julian Becker, Eckhart Fretwurst, Robert Klanner,
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 2 Paul Dauncey Imperial College London.
PIXEL Slow Simulation Xin Li 3/16/2008. CMOS Active Pixel Sensor (APS) Epitaxy is a kind of interface between a thin film and a substrate. The term epitaxy.
11-1 Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon Latch-up & Power Consumption Latch-up Problem Latch-up condition  1   2 >1 GND Vdd.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
A. Dorokhov, IPHC, Strasbourg, France 1 Description of pixel designs in Mimosa22 Andrei Dorokhov Institut Pluridisciplinaire Hubert Curien (IPHC) Strasbourg,
Custom mechanical sensor support (left and below) allows up to six sensors to be stacked at precise positions relative to each other in beam The e+e- international.
Oct Monolithic pixel detector Update  One chip combining both sensor and read-out – source of ionization e- : epitaxial layer of chip – e- collected.
Tera-Pixel APS for CALICE Progress meeting, 6 th June 2006 Jamie Crooks, Microelectronics/RAL.
4 Jun 2008Paul Dauncey1 Crosstalk and laser results Paul Dauncey, Anne-Marie Magnan, Matt Noy.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
Monolithic and Vertically Integrated Pixel Detectors, CERN, 25 th November 2008 CMOS Monolithic Active Pixel Sensors R. Turchetta CMOS Sensor Design Group.
STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 1 Improved radiation tolerance of MAPS using a depleted epitaxial layer.
G.Villani Aug. 071 CALICE pixel Laser testing update Laser MIP equivalent calibration update Si detector coupled to low noise CA + differentiator (no shaper)
Konstantin Stefanov 05/10/ Detecting elements for the CALICE MAPS design How does the collected charge depend on 1.Diode size? 2.Diode position with.
Infrared Laser Test System Silicon Diode Testing 29 May 2007 Fadmar Osmić Contents: Setup modifications new amplifier (Agilent MSA-0886) new pulse generator.
Measurement the Higgs mass via the channel: e + e - → Z H → e + e - + X & Analog vs. Digital Energy Reconstruction in the Si-W ECal Youssef KHOULAKI ILCP.
P. Name Nikhef Amsterdam Electronics- Technology Vladimir Gromov, NIKHEF, Amsterdam. GOSSIPO-3 Meeting March 31, More on the Preamplifier.
1 First look on the experimental threshold effects Straw WG meeting Dmitry Madigozhin, JINR.
Physics performance of a DHCAL with various absorber materials Jan BLAHA CALICE Meeting, 16 – 18 Sep. 2009, Lyon, France.
Design and Characterization of a Novel, Radiation-Resistant Active Pixel Sensor in a Standard 0.25 m CMOS Technology P.P. Allport, G. Casse, A. Evans,
Min FU (co-PhD student of IPHC, Strasbourg, France
CMS ECAL Calibration and Test Beam Results
Electronics for the E-CAL physics prototype
Detecting elements for the CALICE MAPS design
'. \s\s I. '.. '... · \ \ \,, I.
' '· \ ·' ,,,,
Charge diffusion model (again)
TCAD Simulation and test setup For CMOS Pixel Sensor based on a 0
PIXEL Slow Simulation Status Report
Beam Test Results for the CMS Forward Pixel Detector
9 December 2011 CPPM- P.Pangaud HV2FEI4 simulations CPPM P.Pangaud.
R&D of CMOS pixel Shandong University
Stefano Zucca, Lodovico Ratti
Presentation transcript:

CALICE simulation results G.Villani 06 Cell 5 Cell size: 50 x 50 m2 Epitaxial thickness: 12 m 1 Diode location: S1/S4 Diode size: 0.9 x 0.9 m2 10 Nwell size: 3.5 x 3.5 m2 Bias Diode : 1.5V fixed Nwell: 3.3V Pwell: 0V Subs: float 10 hits simulated: mirroring over central cell and transformation over 3 x 3 cells allows surface reconstruction of Qcoll(x,y)

CALICE simulation results G.Villani 06 Cell size 50 x 50 m2 Collecting diodes grouped and kept at fixed bias

CALICE simulation results G.Villani 06 Central Nwell Qcoll(x,y) e- e- Central cell Qcoll(x,y) Central Nwell Qcoll(x,y)

CALICE simulation results G.Villani 06 Current transient Σ Id(t) I(t) ≈3 ns ≈25 ns ≈38 ns ≈300 ns t t Central cell Σ Id(t) hit [1,3,6] Central Nwell I(t) hit [1,3,6] Cell Max Peak current ≈ 0.65 nA Cell Min Peak current ≈ 0.2 nA

CALICE simulation results G.Villani 06 Conclusions Maximum Σ charge signal ≈ 275 e- Maximum Σ current ≈ 0.65 nA Threshold settings might help, but to increase the number of collecting diodes seems advisable Comparison with same cell size no central Nwell in progress

addenda Charge collection transient hit 1 central cell Central cell Charge collected data matrix